CIRCURATIAST COPY Sea C: ". ository

HOLBROOK COVE SURVEY

A 1972 Student Summer Ocean Engineering Laboratory Research Project

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

CIRCURATA COPY Sea Gran pository

HOLBROOK COVE SURVEY
A 1972 Student Sumer Ocean Engineering Laboratory Research Project

Report No. MITSG 72-19
Date: December 31, 1972
Index No. 72-119-Nkw

A fundamental educational experience for undergraduate students of Ocean Engineering is the opportunity to design, construct and operate equipment in the marine environment in a coordinated attack upon some real-world problem. This is the primary objective of the Holbrook Cove Survey. The research objective is to gain a better understanding of the hydraulics and ecology of this small cove and to determine what effect the effluent that a mining operation discharges into this relatively confined estuary may have upon its ecological community. This is one of the projects of the 1972 Summer Ocean Engineering Lakoratory.

A companion report, "The Search for DEFFNCE and Other Projects of Students During the 1972 Summer Ocean Engineering Laboratory," (MITSG 72-20), describes the other Ocean Engineering projects undertaken by the students.

Funding for the 1972 Summer Ocean Engineering Laboratory was provided by:

The National Sea Grant Program, Grant No. 2-35150
The Henry L. and Grace Doherty Charitable Foundation, Inc. The St. Anthony Foundation
The M.I.T. Undergraduate Research Opportunities Program
The M.I.T. Information Processing Board
The M.I.T. Freshman Advisory Council
The Maine Maritime Academy
The Massachusetts Institute of Technology

Alfred A. H. Keil
Director

December 1972

[^0]Miss Anita Harris permitted the use of her properties and facilities on Holbrook Island without which the Holbrook Cove Survey would have been impossible.

The list of faculty and staff at both the Maine Maritime Academy and the Massachusetts Institute of Technology who contributed to the success of the 1972 Summer Ocean Engineering Laboratory would be lengthy and nearly impossible to compile without inadvertent omissions, so to these individuals the participants express their sincere appreciation.

1972 Summer Ocean Engineering Laboratory

PARTICIPANTS
Massachusetts Institute of Technology

Maine Maritime Academy

FACULTY:
Damon E. Cummings
David B. Wyman Donald A. Small
ACADEMIC STAFF:
Keatinge Keays
GRADUATE STUDENT STAFF:
Walter B. Lincoln Roger K. Wells
STUDENTS:
John S. Allen
Stephen E. Barnes
Peter W. Cebelius
Richard Chertow
Robert L. Dwyer
Glenn J. Keller
Michael B. Kennedy
Valery E. Lee
Robert J. Lukens
Edward Murphy
Gerald L. Roylance
John F. Schenck
Karen S. Seo
Alexander T. A. Siapkaras

Raymond Barriault Garry Bartlett George Benson William Blackwood David Bradford Douglas Cameron Bruce Campbell
Malcolm Cianchette Vincent Deviin Daniel Labreque Mark Libby Stephen Lobley Robert McCarty George Miller William Parker John Sautter Gregory Sawyer

TABLE OF CONTENTS

Page
Administrative Statement i
Ack now ledgments ii
Participants iv
1.0 Introduction 1
2.0 Summary 3
2.1 Objective
3
3
2.2 Background 3
2.3 Results 4
2.4 Conclusions 5
2.5 Recommendations 6
3.0 Determination of the Current Patterns in Holbrook Cove 8
3.1 Objective 8
3.2 Procedure 8
3.3 Limitations of Accuracy
9
9
3.4 Data Reduction
10
10
3.5 Results
3.5 Results
12
12
3.6 Conclusions
14
14
3.7 Recommendations 18
4.0 Determination of Current Velocities versus Real Time in the Southern and Northwestern Entrances of Holbrook Cove 23
4.1 Objective 23
4.2 Procedure
23
23
4.3 Results
23
23
4.4 Conclusions
4.4 Conclusions
23
23
4.5 Recommendations 28
5.0 Temperature, Salinity and Chlorophyll 29
5.1 Temperature and Salinity Patterns 29
5.1.1 Objective 29
5.1.2 Background 29
5.1.3 Results 29
5.1.4 Conclusions 34
5.1.5 Recommendations 34
5.1.6 Detailed Procedure 34

TABLE OF CONTENTS (continued)

Page
5.2 Chlorophyll Patterns in Holbrook Cove 36
5.2.1 Objective 36
5.2.2 Background
37
37
5.2.3 Results 37
5.2.4 Conclusions 37
5.2.5 Recommendations
41
41 41
5.2.6 Procedure
5.2.6 Procedure
6.0 Biological Effects of Heavy Pollutants 43
6.1 Objective
6.2 Background 43
6.3 Resulta 43
6.4 Conclusions 49
6.5 Recommendations 51
6.6 Detailed Procedures 51
516.6.1 Sampling Place
6.6.2 Sampling Technique
6.6.2 Sampling Technique
6.6.3 Sample Analysis 51 51 52
7.0 Instrumentation 52
55
7.1 Karman Vortex Trail Current Meter 55
7.1.1 Objective
7.1.2 Background 55
7.1.3 Results 55
7.1.4 Conclusions 55
7.1.5 Recommendations
56
56
7.1.6 Detailed Procedures
7.1.6 Detailed Procedures 56 56
7.1.7 Fabrications
56
56
7.1.8 Calibrations
59
59
7.1.9 Meter Implacements 61
7.2 Impeller-Driven Current Meter 61
7.2.1 Objective 63
7.2.2 Background 63
7.2.4 Mooring 63
7.2.5 Mooring
65
65
7.2.6 Renclusions 65
7.3 Current Direction Indicator 68
7.3.1 Objective 68
7.3.2 Background
68
68
7.3.3 Results
7.3.3 Results
68
68
7.3.4 Conclusions
7.3.4 Conclusions 69
Page
7.4 Oxygen Meter 71
7.4.1 Objective 71
7.4.2 Background 71
7.4.3 Results 71
7.4.4 Conclusions 72
7.4.5 Detailed Description of the Oxygen Meter and Probe 72
7.5 Automated Data Recorder 74
7.5.1 Objective 74
7.5.2 Background 75
7.5.3 Results 75
7.5.4 Conclusions 78
7.5.5 Recommendations 78
7.6 Tide Gauge 78
7.6.1 Objective 78
7.6.2 Background 78
7.6.3 Results 79
7.6.4 Conclusions 79
7.6.5 Recommendations 79
7.7 Detailed Bottom Topography of Holbrook Cove 82
7.7.1 Objective 82
7.7.2 Background 82
7.7.3 Results 82
7.7.4 Conclusions 82
7.7.5 Recondmendations 85
7.8 Bottom Sample Corer 85
7.8.1 Objective 85
7.8.2 Background 85
7.8.3 Results 85
7.8.4 Conclusions 85
7.8.5 Recommendations 86
7.8.6 Detailed Procedure 86
Appendix A Drogue Buoy Computer ProgramsAppendix B Tides at Castine, Maine
Appendix C An Example of the Use of Figure 7.11

LIST OF FIGURES

Page
3.1 Drogue Buoys 8
3.2 Holbrook Cove 13
3.3 Pre-High, High and Post-High Streamlines and Current Velocities 16
3.4 Pre-Low, Low and Post-Low Streamlines and Current
Velocities 17
4.1 Impeller Current Meter Results in Northwest Entry
to Holbrook Cove4. 2 Karman Vortex Trail Current Meter Results in SouthEntry to Holbrook Cove25
4.3 Comparison of Buoy Velocities and Current Meter Results in Northwest Entry to Holbook Cove 26
4.4 Comparison of Buoy Velocities and Current Meter Results in Southwest Entry to Holbrook Cove 27
5.1 Sampling Bottles 30
5.2 Sampling Grid 35
5. Chiorophyll 'A' Contained in Water Samples Taken at Stations IA through 8A 38
 39
5.5 Chlorophyll 'A' Contained in Water Samples Taken at Stations lC through 8C 40
6.1 Callahan Mine Location 44
6.2 Callahan Mine Complex 45
7.1 Karman Vortex Trail Current Meter Results at Castine 57
7.2 Karman Vortex Trail Current Meter Layout 60
7.3 Karman Vortex Trail Current Meter Calibration Curve 62
7.4 Impeller Current Meter (1971 Version) 64
7.5 Impeller Current Meter Mooring 66
7.6 Impeller Current Meter Harness 67
LIST OF FIGURES (continued)
Page
7.7 Oxygen Meter Circuit Diagram 73
7.8 Astable Multivibrator Circuit Diagram 77
7.9 Tide Gauge Construction 81
7.10 Tide Gauge Critical Conditions 83
7.11 Nomogram 84
7.12 Corer Body 87
7.13 Corer Tripping Mechanism 88
7.14 Corer Head and Nipple Insert 89
Page
3.1 Comparison of Length of Baselines as Determined by Triangulation and Measurement (CGS Charts) 10
3.2 Names and Approximate Time Boundaries of Tidal Phases 14
3.3 Tide Phase: Pre-High 15
3.4 Tide Phase: High 18
3.5 Tide Phase: Post-High 19
3.6 Tide Phase: Pre-Low 20
3.7 Tide Phase: Low Tide 21
3.8 Tide Phase: Post-Low 22
5.1 Temperature, Salinity, Density and Chlorophyll 'A' at Depth $=0$ Meters 31
5.2 Temperature, Salinity, Density and Chlorophyll 'A' at Depth $=3$ Meters 32
5.3 Temperature, Salinity, Density and Chlorophyll 'A' at Depth $=6$ Meters 33

1.0 INTRODUCTION

This report is the first of two volumes concerning the accomplishments of the $1972 \mathrm{M} . I . \mathrm{T} . /$ Maine Maritime Academy Sea Grant Summer Ocean Engineering Laboratory. It describes the investigations students conducted in an oceanographic and biological survey of Holbrook Cove in July 1972. The second report deals with their successful search for the remains of a Revolutionary War privateer, the design and construction of equipment for use in future Sumer Ocean Engineering Laboratories, and other activities.

The Summer Ocean Engineering Laboratory provides undergraduate ocean engineering students an opportunity to combine theory and practice when they design simple equipment and test and operate this equipment in the real environment for which the students must prepare themselves.

We selected two major projects in which all the students' equipment could be utilized in coordinated efforts; thus each student had an opportunity to contribute useful results to a real-world ocean engineering project. These two major projects are a comprehensive survey of Holbrook Cove and a systematic search for the remains of American Revolutionary War ship hulks.

For the students, the Summer Laboratory demonstrated that there is more to ocean engineering than just conceptual design and theoretical analysis. They dealt first-hand with Murphy's Law. They experienced the rigors of the marine environment, including the limitations of weather, the swift devastation of corrosion, and the exacting demands of hydrostatics.

Their benefits, judging from the students' post-Summer Lab interests and activities, include: a better perspective of their academic experiences; an enhanced appreciation for the relevance of the various elements that comprise an ocean engineering curriculum; an intensified curiosity directed toward unfamiliar facets of ocean engineering; and, in some cases, an inspiration for a special project or thesis.

In the report of the 1971 Summer Ocean Engineering Laboratory we stated:

The opinion of all who were involved with this project, students and faculty of both M.I.T. and Maine Maritime Academy, visiting faculty, and consultants, was that this program served an educational purpose that is essential early in the students' ocean Engineering education. All hands were exposed to the myriad of problems encountered in attempting to apply theory and classroom experience to equipment and procedures that must work at sea without the enomous expense and pressure of full-scale industrial or government projects. The usual mistakes were made in an environment where they could be dealt with without cost or loss of essential data and the lessons were learned.
Our experience during this second Sumer Ocean Engineering Laboratory reinforces our faith in the value of this educationa: experience.

2.0 SUMMARY

2.1 Objective

The objective of the Holbrook Cove Survey is to gain an understanding of its hydraulics and ecology in order to ascertain the effect which the effluent from the Callahan mine outfall has upon the Cove.

Holbrook Cove is located approximately one-half mile southwest of Castine, Maine, and appears on U.S. Coast \& Geodetic Survey Chart number 311 , as well as the Department of Interior/ Department of the Army topographical map of Castine, Maine. 2.2 Background

This project permitted the M.I.T. and Maine Maritime Academy students to design, construct and utilize individual equipment and employ them in the marine environment in a coordinated attack upon a real problem. It had come to the attention of those participating in the 1972 Summer Ocean Engineering Laboratory that heavy metal pollution is a problem in the coastal areas of Maine and that a relatively new mining operation had opened in Holbrook Cove. It is deemed possible that the effluent from the outfall of this mining operation has a profound effect upon the ecology. The following research projects were planned and coordinated to study this problem.

PROJECT

Tidal Current Streamlines and Velocity

Temperature and Salinity Chlorophyll 'A' Content

Benthic Infauna Distribution
Tidal Height Fluctuations
Detailed Bottom Topography
Bottom Soil Structure
Water Oxygen Content

STUDENT PARTICIPANTS

Cebelius, Kennedy and Lukens

Murphy
Chertow
Dwyer, Lee, Seo

Barnes
Cameron, Cianchette and Sautter
Barriault

Murphy

2.3 Results

The results of the individual projects are as follows:

Project Results

Tidal Currents

Temperature and Salinity

Chlorophyll 'A' content

Streamlines at various tidal phases have been established. Current velocities have been calculated. Current velocities have been measured on a realtime basis at the northwestern and southern entrances to the Cove. Fluctuations indicate a seiche in the Cove has a profound effect upon the velocity at any given time.

These measurements were made. The results are contained in trables 5.1, 5.2 and 5.3.

These measurements were made. The results are contained in Figures 5.3, 5.4 and 5.5 and Tables 5.1, 5.2 and 5.3.

Benthic Infauna Distribution
Still being analyzed. Initial trends indicate that the biomass and numbers of individuals are at a minimum at the sampling station nearest the outfall. This may indicate that the effluent has an adverse effect on the biota.

Tidal Height Fluctuations

Detailed Bottom Topography

A tide gauge has been built and tested, but the scribe mechanism and the magnitude of frictional forces did not permit the gauge to give useful results.

A nomogram was prepared to permit the soundings to be related to the MLLW datum. In testing the nomogram against observed tidal heights at Castine, it was noted that the scope of tide appears to be about one foot greater than indicated in the tide tables. Time precluded the detailed sounding program execution.

Project	Results
Bottom Soil Structure	A corer and release mechanism were designed and built. During the first in situ test the messenger line used for retrieval was severed and the unit could not be relocated for recovery.
Oxygen Content of Cove Water	An oxygen meter was designed and constructed for use with an oxygen probe borrowed from the Woods Hole Oceanographic Institution. Time precluded calibration. No measurements of oxygen content of Cove water were made.

2.4 Conclusions

It is apparent that the educational objectives of this project were met. All of the rigors of the marine environment were apparent from the restrictions of weather to the effects of corrosion. The constraints of time demonstrated that careful planning is necessary if this priceless commodity is to be conserved and that, if it is not conserved, the entire effort up to the deadline may end in frustration. The loss of the corer dramatically demonstrated the need for failure analysis and provision of safeguards to handle those failures which may occur if an entire project is not to be jeopardized by some malfunction. Finally, the students received practical training in boat handling, safety at sea, navigation and the discipline these activities imply.

The research objectives were partially net. The results of the investigations into the hydraulics of the Cove indicate that there may be a seiche that significantly affects the current velocity magnitudes. Sampling of data at thirty-minute intervals does not give a meaningful result in this instance since the sampling intervals must be less than half the period of the seiche to obtain a meaningful real-time result. The gross flow patterns in the Cove have been defined particularly in the vicinity of the three entrances. Finally, the results suggest that the variation of current velocity with respect to depth is significant and should be investigated.

The results of the temperature and salinity survey reveal no anomalies in the absence of flow from the mine outfall.

The chlorophyll 'A' measurements do not suggest any effect upon chlorophyll 'A' distributions in the vicinity of mine outfall. In the absence of a constant effluent flow, none would be expected.

The preliminary results in the study of the benthic infauna distribution suggest that there is a detectable adverse effect. upon the ecology in the vicinity of the mine outfall.

2.5 Recommendations

The Holbrook Cove Survey is incomplete as of this writing. From the research point of view, there is still a great deal to be learned in this relatively small geographical area. A better and more complete survey could and should be conducted, taking advantage of the lessons and mistakes of the 1972 effort. Certainly, the equipment not used in the 1972 survey should be employed to complete those research objectives not carried out in this effort because of the limitations of time.

A determination of the period and magnitude of the seiche in Holbrook Cove and its effect upon the flow patterns is a very intriguing project and the most effective means appears to be through the use of current meters. A second study which suggests itself is the determination of the variation of current with respect to depth. Both of these projects would be enhanced by the design and construction of a device that will establish current direction for use with the current magnitudes as measured by the current meters.

If the Callahan mine outfall is discharging effluent, a repetition of the study of the chlorophyll 'A' distribution seems indicated. Perfection of a method to measure the concentration of heavy metal ions to correlate with the clorophyll 'A' patterns is highly desirable.

From the educational viewpoint, the efforts in surveying the Cove are ideal. The project is of necessity interdisciplinary and careful coordination is required if the results are to be meaningful. This coordination imposes the discipline of
scheduling, which is one of the very real constraints not adequately imposed by any other form of educational experience. It is therefore recommended that the survey effort be considered for future Summer Ocean Engineering Laboratory projects.
3.0 DETERMINATION OF THE CURRENT PATTERNS IN HOLBROOK COVE
3.1 Objective

This Froject has as its objective the determination of the current velocities anc streamlines in the Holbrook Cove estuary as a function of time anc tide. Data were obtained by the use of drogue Euoys (see Figure 3.1). By recording the geographical position of each bloy and the associated time, velocities and positions have been calculated.

Figure 3.1
Drogue Buoys

3.2 Procecure

Neasirement of buoy positions and the related times were made at various locations in the cove over the complete spectru ct tise states. Although it was originally planned to cover tie entire area of the Cove, limitations of time forced the proj ect to select those areas which appeared to be most crucial to the anderstarding of the cove's current patterns, and concentrate the data-cathering efforts only in those areas.

Georraplical measurements of buoy positions were made by -Gtatiistina a baseline between two transits and recording both i-s length ara lintz of bearing. Using the transits at the ends
of the baseline, simultaneous measurements of the relative angle between the baseline and the line of sight from each transit to a buoy were made and recorded. The units of measure employed were:

Directions and angles--degrees and minutes
Baseline length--meters
Time-hours, minutes and seconds
3.3 Limitations of Accuracy

Factors affecting data accuracy were both natural and mechanical. The natural factor that was of concern was the effect of the wind upon the paths and velocities of the buoys. Wind velocities in excess of two knots were considered to measurably affect data accuracy, and wind velocities in excess of five knots were considered unacceptable. In reducing the data, all measurements taken in conditions involving wind velocities in excess of two knots were discarded. In reducing the data, it appears that there may be some measurable wind effect at velocities of one to two knots. This fact led the team to concentrate the datagathering effort into the very early morning hours in which there is generally no measurable wind.

Mechanical factors affecting the accuracy of the data were the limitations equipment imposed upon the measurements of the baseline lengths, line-of-sight angles with respect to the baseline and the times of each measurement. The end positions of the baselines were established by locating them on a chart of the estuary with respect to landmarks depicted thereon. Lengths of the baselines were determined by first calculating the length by means of triangulation and then measuring the distance between the two end positions as located on the Coast and Geodetic Survey Charts. Table 3.1 contains a comparison of the length of the baselines as determined by triangulation and by measurement from the Coast and Geodetic Survey Charts.

It is estimated that the line-of-sight angles with respect to baseline were measured with limits of accuracy of about tone-half degree of arc. Time was measured to the nearest tenth of a minute (six seconds).

Table 3.1
COMPARISON OF L.ENGTH OF BASELINES AS DETERMINED BY TRIANGULATION AND MEASUREMENT (CGS CHARTS)

	LENGTH	
	MEASURED FROM CHART	MEASURED BY
RASELTNE	823	950
$015 / 195$	311	321
$026 / 206$	347	368
$108 / 288$	293	246
$122 / 302$	329	333
$146 / 326$	466	397
$174 / 354$		

3.4 Data Reduction

The large volume of data collected made the use of a computer highly desirable. The quality of the data was carefully examined and several series of observations were disregarded because they appeared to have been severely affected by wind. The remainder of the data was then sorted first by utilizing a computer program to calculate buoy velocities and then discarding all inconsistent observations. For example, if a buoy's velocity changed drastically between observations and then appeared to return on succeeding observations to values consistent with earlier observations and the buoy's position was inconsistent with those established by preceding and succeeding observations, the data corresponding to the nonconforming observation was discarded. This procedure was adopted after it was noted that the paths of the buoys were linear or involved only slight degrees of curvature, except for a very few instances in which buoys came under the influence of a vortex. In those instances, only the most erratic cases were disregarded.

The data reduction required solutions of two equations of the form:

$$
\begin{aligned}
& P_{n}=f(x, y) \\
& V_{n}=g\left(P_{n}, P_{(n-1)}, \Delta T\right)
\end{aligned}
$$

where
P_{n} and $P_{(n-1)}$ are buoy positions at times n and
$(n-1)$ respectively;
f and g are functions involving the parameters contained within the parentheses which follow them;
x and y are orthogonal coordinates in a twodimensional grid system with the x coordinate measured parallel to the observation baseline:
ΔT is the time interval between the observations establishing the positions P_{n} and $P_{(n-1)}$.

In order to define the positions of the buoys in terms of the coordinate system, x and y, using the baseline as the base of a triangle and the lines of sight from the ends of the baseline to the buoy as its other two legs, the computer was utilized. The known quantities are the length of the baseline and the two included angles between the lines of sight and the baseline. Establishing one end of the baseline as the origin of the coordinate system, the calculation of the orthogonal projection of the leg formed by the line of sight from that end of the baseline to the buoy defines the x coordinate. The calculation of the altitude of the vertex, formed by the intersection of the two lines of sight, with respect to the baseline defines the y coordinate. The computer was programmed to calculate the x and y coordinates using the law of sines. No attempt was made to utilize a single coordinate system for the entire estuary, but rather a different one was used for each baseline. If desired, a set of transformation equations could have been derived, but it would have unnecessarily complicated the problem. streamlines were represented graphically on a chart of the cove. As a matter of expediency two Fortran IV programs were written. The first calculated the x and y coordinates and the velocities punching the calculated data onto cards which served as data
for the second program. The latter program plotted the streamlines on a mechanical plotter. These streamlines were then positioned on a chart of the cove and a reproduction made from the result.

A listing of each of the two programs is found in Appendix A. A description of the first program is also included in the appendix, but, since the second program merely reads Cartesian coordinates and calls an IBM-supplied plotting subroutine, no description seems to be required.

3.5 Results

Figure 3.2 is a reproduction of the chart of Holbrook Cove showing its major physical features and the surrounding landmarks. The features which appear to have the greatest effect upon the flow patterns of the Cove are three entrances: the sandbar (northern entrance), the Nautilus Rock Channel (northwestern entrance) and the Goose Falls Channel (southern entrance) The gandbar is submerged from zero to eight feet, varying from three hours before high tide to three hours after high tide. Since the drogue buoys used in this project required at least five feet of water depth, little data was obtained in the vicinity of the sandbar. It should be noted that all times in the ftgures which follow are recorded in hours and minutes from the High or Low tide. The times of High and Low tide were calculated based upon the U.S. Department of Commerce Tide Tables using the correction factors for Castine, Maine (see Appendix B)

The data have been grouped into six time periods, each corresponding to approximately a two-hour phase in the Tidal cycle. The names and approximate time limits of each phase are contained in Table 3.2.

Figures 3.3 and 3.4 contain the streamlines and flow velocities. Tables 3.3 through 3.8 list the dates of the observations, initial and final observation times (recorded with respec to the hours and minutes before or after the high/low tide) and the baseline from which the observations were made. The baselines are identified in figure 3.2 .

Figure 3.2
Holbrook Cove

Table 3.2
NAME AND APPROXIMATE TIME BOUNDARIES OF TIDAL PHASES

NAME	BEGINNING	END
Pre-High Phase	3 hours before high tide	1 hour before high tide
High Phase	1 hour before high tide	1 hour after high tide
Post-High Phase	1 hour after high tide	3 hours after high tide
Pre-Low Phase	3 hours before low tide	1 hour before low tide
Low Phase	1 hour before low tide	1 hour after low tide
Post-Low Phase	1 hour after low tide	3 hours after low tide

3.6 Conclusions

The streamline and velocity charts for the pre-high phase (Figures 3.3 and 3.4) reveal that buoy direction reversals begin with those buoys located closest to the southern entrance. The tidal flows appear to initiate approximately 45 minutes earlier at the southern end than at the northern end of the Cove. There appears to be a tidal phase gradient in the area of the cove bounded by the southern entrance and by Ram Island. The streamline chart (Figure 3.3) for the pre-low phase indicates slack water about one hour before the predicted low tide at Castine, Maine. The velocity chart (Figure 3.4) for the low phase indicates rather high velocities at the times of predicted slack water at Castine, Maine. It is noted that buoy velocities appear to decrease as they approach Ram Island.

The basin north of Ram Island can be pictured as a large tank with four inlets/outlets (one of which is open for about three hours before and after high tide). The currents through the northwestern and southern entrances to the Cove in post-low and pre-high phases are in opposition in the shallow channel west of Ram Island. The current from the southern entrance is predominant and forces water back toward the northwestern entrance.

As the current in the southern entrance begins to shift from flood to ebb, water continues to fill the basin. By the time the current at the northern entrance (the sandbar) begins

Table 3.3
TIDE PHASE: PRE-HIGH

DATE	BUOY	$\begin{aligned} & \text { TIME } \\ & \text { START } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { END } \\ & \hline \end{aligned}$	OBSERVATION BASELINE
7/25	F3R	-3:00	-2:29	026/206
7/25	F4R	-2:10	-1:07	026/206
7/25	F30	-3:56	+0:36	026/206
7/19	K3B	-5:05	-3:36	108/288
7/19	K2RB	-5:00	-3:04	108/288
7/19	K3RB	-2:41	-1:48	108/288
7/19	K3R	-2:43	-1:55	108/288
7/19	K3w	-2:42	-1:48	108/288
7/19	K3WG	-2:39	-1:50	108/288
7/25	E3W	-1:53	+0:08	146/326
7/26	C2R	-2:22	-1:54	108/288
7/26	C3W	-3:03	-2:25	108/288
7/26	C2B	-4:10	-2:55	108/288
7/26	C3B	-2:30	-2:20	108/288
7/26	D20	-2:08	-1:21	174/354
7/26	D2R	-3:19	-2:58	174/354
7/25	E3Y	-2:40	-2:12	146/326
7/25	E4Y	-1:54	-0:50	146/326
7/25	E3RB	-2:35	-2:09	146/326
7/25	E2W	-2:41	-2:14	146/326
7/25	F3B	-3:35	-3:00	026/206

Figure 3.3 Pre-High, High and Post-High Streamlines and

pue seuṭueəa7s MoI-7SOd pue MOT 'MOT-əxd $\boldsymbol{*}^{*} \varepsilon$ axnbig

Table 3.4
TIDE PHASE: HIGH

DATE	BUOY	$\begin{aligned} & \text { TIME } \\ & \text { START } \end{aligned}$	TIME END	OBSERVATION BASELINE
7/26	DIY	-2:06	+2:03	174/354
7/26	D30	-0:59	+1:57	174/354
7/26	D2RB	-1:00	+0:41	174/354
7/26	C3R	-1:31	+1:40	108/288
7/26	C4B	$-1: 56$	+1:50	108/288
7/24	Glo	-0:04	+1:45	015/195
7/24	GlR	-0:06	+1:42	015/195
7/25	F5B	-1:03	+0:35	026/206
7/25	F5R	-0:59	+0:37	026/206
7/24	GlB	-0:04	+1:38	015/195
7/24	H1W	-0:42	+0:22	146/326
7/24	H1PB	-0:45	+0:25	146/326
7/11	LIR	-1:03	+0:25	122/302
7/11	LIW	-1:04	+0:27	122/302
7/11	LIWG	-1:06	+0:30	122/302
7/11	L1RB	-1:05	+0:31	122/302

to ebb, the basin has begun to empty. The current through the northern entrance (the sandbar) begins to flow into the basin and the currents through the outlets formed by the northwestern entrance and the channels east and west of Ram Island flow out of the basin. When the water level falls below the sandbar in the northern entrance, blocking flow, the currents through the remaining three outlets continue to flow out of the basin until the next current reversal at low tide. 3.7 Recommendations

The use of buoys and transits is subject to many limitations. First and foremost is the restriction on their use to periods of

Table 3.5
TIDE PHASE: POST HIGH

DATE	BUOY	TIME	TIME	OBSERVATION BASEINE
$7 / 23$	ILRB	$+0: 51$	END	$+2: 32$

Table 3.6
TIDE PHASE: PRE-LOW

DATE	BUOY	TIME $7 / 22$	J2Y	TIME END
$7 / 22$	J2R	$-2: 27$	OBSERVATION BASELINE	
$7 / 22$	J2B	$-2: 30$	$-0: 15$	$108 / 288$
$7 / 22$	J2RB	$-2: 32$	$-0: 52$	$108 / 288$
$7 / 24$	H3Y	$-2: 33$	$-0: 27$	$108 / 288$
$7 / 24$	H3W	$-2: 09$	$-0: 42$	$108 / 288$
$7 / 23$	I2Y	$-2: 14$	$-1: 25$	$146 / 326$
$7 / 23$	I20	$-1: 43$	$-1: 23$	$1.46 / 326$
$7 / 19$	K1WG	$-1: 41$	$-1: 22$	$015 / 195$

little or no wind. This severely limits the time available for gathering data. In addition, the buoys proved to be difficult to place in position, transport and store.

The transits require rather large crews since two transits are required per baseline and two or three men are needed at each station to communicate, man the transit, and record data.

The communications and recording duties can often be combined but, since at one of the transit stations a person must coordinate the sighting by the two stations, it is difficult to operate with less than four persons manning the two transits, while five persons appear to be optimum. There is also the added problem that, since buoys often run aground and in order to understand the currents, buoys must be frequently repositioned, an additional person is required to man a boat. Fatigue will also begin to take its toll, if a station is to be run over four or five hours and a replacement crew will be required. In short, buoy and transit stations require too many people to be an optimum solution.

Table 3.7
TIDE PHASE: LOW TIDE

DATE	BUOY	TIME START	TIME END	OBSERVATI BASELINE
7/27	Alo	-3:03	+1:30	026/306
7/27	Aly	+0:09	+1:29	026/306
7/26	ClB	-0:18	0:00	108/288
7/27	B3W	+0:33	+1:21	108/288
7/22	J3RB	+0:03	+1:08	108/288
7/22	J20	+0:05	+1:07	108/288
7/22	J3R	-0:01	+0:47	108/288
7/22	J3B	+0:02	+1:08	108/288
7/22	J3Y	$0: 00$	+1:15	108/288
7/22	J3W	-0:02	+0:38	108/288
7/19	K1w	-1:16	-0:02	108/288
7/19	K1RB	-1:17	+0:04	108/288
7/19	K1R	-1:18	+0:03	108/288
7/25	F1R	+0:14	+0:59	026/206
7/25	F1B	+0:12	+1:02	026/206
7/26	ClR	-0:22	+1:52	108/288
7/26	C1W	+0:06	+1:37	108/288

Before buoys are employed in future projects, they should be redesigned to permit operation under unfavorable wind condi tions. The visible part of the buoy should be made more easily identifiable and less dependent on lighting conditions, so increased distance and bad weather will not hamper tracking. The operational maximum was six buoys with a sighting period of approximately six minutes. The optimum was four buoys with a three-minute tracking period. Acoustical tracking by means of sonar might be an alternative.

The use of stationary current meters would eliminate many of the problems of buoy tracking, but would raise new ones. As

Table 3.8
TIDE PHASE: POST-LOW

- DATE	BUOY	$\begin{aligned} & \text { TIME } \\ & \text { START } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { END } \\ & \hline \end{aligned}$	OBSERVATION BASELINE
7/26	D1 RB	+0:14	+3:05	174/354
7/26	D10	+0:15	+3:00	174/354
7/26	K2W	+1:13	+3:12	108/288
7/26	K2R	+1:15	+3:15	108/288
7/26	K2WGS	+2:01	+2:28	108/288
7/25	F20	+1:09	+1:55	026/206
7/25	F2R	+1:18	+3:14	026/206
7/25	F2B	+1:16	+2:19	026/206
7/25	ElW	+1:10	+2:43	146/326
7/25	E2RB	+2:22	+2:47	146/326
7/25	E2Y	+2:02	+2:45	146/326
7/26	ClO	-0:19	+2:43	108/288
7/26	C2W	+1:53	+2:44	108/288
7/25	E1Y	$+1: 13$	+1:44	146/326

it stands now, most current meters provide a current magnitude, but a current direction would also have to be obtained. Another limitation of current meters is the fact that they are difficult to moor and reposition.

An optimum approach might be the use of a combination of buoys and current meters. The buoys, of course, utilize a Lagrangian type of coordinate system, while the current meters use a Eulerian type of system, but with the information from both, an exceptional picture of the hydrodynamics of the Cove could be obtained.

4.0 DETERMINATION OF CURRENT VELOCITIES VERSUS REAL TIME IN
 THE SOUTHERN AND NORTHWESTERN ENTRANCES OF HOLBROOK COVE

4.1 Objective

The objective of this project is to measure current velocities in the center of the channel at the southern and northwestern entrances of Holbrook Cove over a complete tidal cycle. 4.2 Procedure

The current meters were moored in approximately the center of the southern and northwestern channels at a depth of approximately 10 feet at low tide. A clock-timing device was used to record the current meter pulses on magnetic tape for a period of four minutes at half-hour intervals, on the hour and halfhour. The magnetic recorders were later retrieved. An operator rewound the tape, placed the tape recorder in the "play" mode and counted the number of pulses over a 10 -second interval. Current velocities were then detemined using the pulses per second to enter the calibration curves.

4.3 Results

Figures 4.1 and 4.2 are plots of current velocities at 30 minute intervals. The tidal phase noted at the bottom of the figures relate the time to the tidal phase at castine. Figures 4.3 and 4.4 compare buoy velocities calculated from observations taken in the vicinity of the current meter positions with the results of the current meters. It should be noted that the buoy observations were not made on the same day that the current meters were implanted and that the buoy positions are in the same general area, but not identical to the positions of the current meter. It should also be noted that the current meters were placed a fixed distance from the botton of the cove and their depths therefore vary with the height of the tides. It is estimated that the depth of the current meters varied from approximately 10 feet to approximately 20 feet over the complete tidal cycle.

4.4 Conclusions

In comparing the results of the current meters and the buoys, it appears that there may be a periodic velocity fluctuation that significantly affects the magnitudes of the currents

Figure 4.2
Karman Vortex Trail Current Meter Results in South Entry to Holbrook Cove

Figure 4.3
Comparison of Buoy Velocities and Current Meter Results Northwestern Entrance to Holbrook Cove

Figure 4.4
Comparison of Current Meter and Body Velocity Results in South Entry to Holbrook Cove
in the Cove. The results suggest that the period of this oscillation is about 8 to 12 minutes and the velocity variations may be as much as plus or minus 30 percent around some mean value.

Based upon the results of both the current meters and the buoy velocities, it is concluded that the tidal currents in Holbrook Cove are significantly affected by a seiche. In planning the project, this result was not anticipated and the time intervals selected for recording currents was arbitrarily set at 30 minutes. In addition, it appears that there is a significant reduction in the current velocities recorded by the current meter when the depths are greatest, i.e., near high tide.

4.5 Recommendations

While it appears that the current meter and recording system functioned properly, the reduction of data by counting the number of "beeps" over a time interval as a means of establishing velocity is far too time-consuming. It is therefore recommended that a means of recording velocity that will permit a more automated reduction of data be devised.

It is also recomenced that any future projects consider the possibilities of a seiche and velocity measurements be made continuously over longer time spans or, if intermittent current velocity measurements are made, the interval between measurements be shortened to a period that is less than half the period of the estimated seiche.

Finally, it is recommended that a vertical array of current meters be deployed to establish the velocity profile as a function of depth.

5.0 TEMPERATURE, SALINITY AND CHLOROPHYLL

5.1 Temperature and Salinity Patterns
5.1.1 objective

The purpose in studying temperature and salinity in
Holbrook Cove is to obtain baseline data usable in density analy sis. This data will be useful in establishing the prevailing conditions in Holbrook Cove, and how these conditions may affect biology and water movement. The design of inexpensive water sampling bottles and their construction was required to achieve the primary objective (see Figure 5.1).

5.1.2 Background

Salinity and temperature analysis is a standard practice in physical oceanography. Salinity gives a good idea of the horizontal and vertical extent of dilution in the Holbrook micro estuary. Presumably, fresh water from both the Bagaduce and Penobscot Rivers dilute sea water in the area of the Cove. Rainwater also has a day-to-day effect, although sampling was not extensive enough to draw any conclusions about this effect.

Temperature is of equal value to the oceanographer. Within any geographical basin, one generally finds more than one water type. Temperature tends to be the prime indication of a transi-: tion from one water type to another; and the word thermocline denotes just such a boundary. Temperature is seasonal, and has a controlling effect on the biological community.

Finally, temperature and salinity, coupled with the depth at which the sample was taken, can be combined to calculate the density of the water sample. Density, also a characteristic of the particular water, determines the physics of that water body to some extent. Statically, more dense water will lie at the bottom of basins. Dynamically, the forces on waters of different density are the cause of water movement.
5.1.3 Results

The results of this investigation are tabulated in Table 5.1, 5.2 and 5.3. The column headed "Chlorophyll 'A'" is discussed in Section 5.2.

Figure 5.1
Sampling Bottles

TABLE 5．1
TEMPERATJPE，SALINETY，DENSITY AND CHLQROPHYLL＇A＇ AT DOFTH＝C METERS

STATICN	TEMPERATURE IDEGREES CENTIGRADE）	SALINITY	SICMA＇1＇	$\begin{gathered} \text { CHLORGPIYLL } \\ \text { (NICROGRAMS } \\ \text { PFR LITES) } \end{gathered}$
1 A	17.5	26.19	15.22	？． 071
18	17.5	25.44	13.1 ？	1． 5.36
16	17．5	25.30	16.02	1．417
2 A	17.0	25．6t	16.40	1.417
2 B	15.0	25.22	13.4%	1．417
2 C	17.0	24.34	17．7s	1．7．4＇4
3 A	17．0	25．3J	19.13	1．＇+17
3 B	17.0	25.39	10．1？	1.290
36	13.0	25.02	17.90	）． 731
4 A	17.5	24.05	17.79	1．917
4 e	17.5	24.86	17.73	1.993
4 C	18.0	25.44	18．01	1.417
5 A	17.0	25.37	19．56	1.199
5 5	14.0	26.79	13.44	9． 391
5 C	17.2	こ7．13	19.45	1.417
6 A	17.0	25．tio	19.40	1．3）3
$\bigcirc \mathrm{CH}$	13.0	21.05	10.20	1．7．4
6 C	14.0	26.92	19.90	2.130
7 A	17.0	26.13	10.30	）．931
$7 \mathrm{7C}$	17.5	こち．」3	13.51	1）． 372
7 C	17.0	25.33	13.15	3.931
\％A	17.5	$\therefore .17$	13．61	
3 B	19.0	76.40	15.74	3.136 3.201

FAOLLE 」.?
TEMPL fATUPE, SALINITY, DENSITY AND CHECRGPHYLL 'A"
AT DEPTH $=3$ METERS

STATICN	TEFPERATURF ICEGREES CENTIGRADEJ	SALINITY	SIGMA 'T'	CHLCROPHYLL ${ }^{\prime \prime}$ (MICZEGRAMS per literj
1 A	15.0	28.72	20.02	1.526
1 B	16.0	26.20	15.03	1.309
1 C	14.0	20.29	19.51	1.635
2 A	17.0	25.32	18.52	1. 744
29	11.5	20.11	19.32	1.902
2C	15.0	20.30	14.38	2.239
3 A	12.0	27.46	20.78	1.535
3 B	10.0	27.28	$2 C .97$	1.5.?
3 C	19.0	29.07	22.36	1.199
4 A	10.5	27.39	20.97	1.744
4 B	10.0	27.03	21.03	1.353
4 C	10.5	26.18	20.03	1.199
5 A	12.5	28.51	21.50	2.071
50	9.5	2 E .18	21.74	1.962
50	11.0	73.67	22.04	2.398
6 A	11.0	23.29	21.59	1.744
68	9.5	29.30	21.79	2.597
$\in \mathrm{C}$	10.0	23.91	22.23	2.371
7A	12.0	27.10	2C. 50	1.635
73	12.0	27.03	21.98	1.962
7 C	12.0	28.54	21.54	1. 7 +4
SA	1. 3	20.50	21.39	1.179
± 13	11.5	23.42	21.61	1.536
$b \mathrm{C}$				

TABLE 5.3
TEMPEFATURE, SALINITY, JENSITY AND CHLOROPHYLL . A, AT DEPTH $=6$ METERS

1 A	3.5	25.54	22.92	0.763
1 B	5.5	29.34	22.64	0.763
1 C	10.0	28.56	21.96	2.616
2 A	11.0	29.90	22.84	1.199
2 C	9.0	29.72	23.02	0.545
2C	11.0	29.32	22.39	0.218
3.3	9.0	29.90	23.16	0.931
38	3.5	29.90	23.23	0.654
3 C				
4 A	3.5	29.61	23.00	0.436
4 B	3.5	29.6.1	22.78	- 3.327
4 C	9.5	24.63	22.87	0.763
5 A	3.3	31.07	24.17	0.218
58	3.4	29.34	23.20	0.436
5 C				
60				
- 8	3.2	25.30	22.50	0.436
6C	9.5	30.44	23.65	0.936
7A	9.0	25.45	22.96	0.327
78	2.5	20.54	22.02	0.436
7 C				
3 A	9.5	29.65	72.89	0.763
3 B	9.0	29.96	22.13	0.213

5.1.4 Conclusions

There is nothing dramatic revealed by the temperature, salinity, and density data.

The more dense water fills the deeper depths of the Cove. This would be consistent with the existence of a current through the Cove.

There is no indication of an effect by the Callahan mine outfall on the temperature, salinity or density patterns in Holbrook Cove during the period of this study. 5.1.5 Recommendations

More electronic analyzing equipment is needed. Titrating is an especially long, tedious operation which leads to error.

A greater quantity of data is required to build a better picture of Holbrook Cove temperature, salinity and density patterns. Priority should be given to a number of samplings of the same area at different times of day. Then the variance of the data with respect to time could be related to water motion. 5.1.6 Detailed Procedure 5.1.6.1 Sampling Plan

To facilitate relating the temperature and salinity data to the biological accuracy results, an identical sampling grid was used for both projects (see Figure 5.2). 5.1.6.2 Sampling Technique

The sampling was accomplished using the water sampling bottles built in conjunction with this project. Once at the sampling position, determined by sighting angles on shore landmarks, the depth was determined using the fathometer on R.V. LOBSTER, the boat from which the samples were collected. It was then decided how many bottles spaced at depth intervals of three meters could be lowered.

Once this had been ascertained, the bottles were readied on the rear deck of the boat along with labeled, plastic-capped storage containers. The sampling bottles were attached to the heavy line at intervals of three meters as the line was lowered.

The bottles were triggered at the desired depths. They were then hauled up and the water in each bottle was emptied into a labeled container.

Figure 5.2

Sampling Grid

At the same station, the bathythermograph was lowered and retrieved. Its data slide was then removed and stored for later analysis.

5.1.6.3 Sampling Analysis

Once back at the laboratory, the water samples were titrated to determine chlorine content, using the silver nitrate method. The data were then converted to total salinity using the general formula:
$S=0.03+1.8050 \mathrm{cl}$
(where the units are parts
per thousand)

The salinity was then tabulated according to station and depth.

The temperature data were drawn from the bathythermograph slides. For each station, the correct slide was read for the water sampling depths. The resulting temperature corresponded to the depths of each sample, and was tabulated next to salinity.

Using this temperature and salinity data, the U.S. Navy Hydrographic Tables were used to compute σ_{t}. σ_{t} is a parameter relating the density (0) of a water sample to the density of pure water (pure water has a density, p, of l.0000).* The density of the water sample is related to pure water by using the equation

$$
\sigma_{t}=(\rho-1) 1000
$$

If ρ equals 1.02575 , then σ_{t} equals 25.75 . It should be noted that the effect of pressure on density was not included because it is minimal for the depths in the Cove.
5.2 Chlorophyll Patterns in Holbrook Cove

5.2.1 Objective

This portion of the ecological survey is designed to quantitatively measure the distribution pattern of chlorophyll in the Holbrook Cove sampiing area. A marked increase in chorophyll concentration with increased distance from the Callahan mine

[^1] and R. H. Fleming, 1942, The Oceans, Prentice-Hall, Inc., N.J.
outfall would suggest that the effluent from the outfall is harmful to the diatom population and therefore has an unbalancin effect on the entire ecosystem, since diatoms are a major source of food for the Cove inhabitants.

5.2.2 Background

Gentile and Erickson (1971) ${ }^{1}$ in their study of the Goose Pond area were able to make a direct correlation between the effluent, rich in heavy metals (notably copper), and the growth inhibition of a particular diatom, Cyclotella nana. The ability of the water to support Cyclotella decreased as the mine outfall was approached. When a chelator was added to the samples, rendering the copper inert, the diatom population increased. Although this was not conclusive evidence, it does suggest that heavy metal pollution from the outfall is upsetting the plankton community.

The method used by this experimenter was to collect samples at various depths from stations upstream and downstream of the outfall, giving a fairly accurate cross section of the entire sampling area. Tests were made for a specific chlorophyll con centration, referred to as Chlorophyll ' A ,' which is the major green component of the particular diatom in question. 5.2.3 Results

Using water bottles, 106 samples were taken. 105 were analyzed, one being lost. The results are found in Figures 5.3 5.4 and 5.5 as well as in Tables $5.1,5.2$ and 5.3. The data in the tables are the Chlorophyll ' A ' concentrations in micrograms per liter ($\mu \mathrm{g} / \ell$) for each sample. The station numbers lA, IB, 1C, etc., refer to the stations in Figure 5.2.

5.2.4 Conclusions

One of the major assumptions about which this research project was planned was that the flow from the Callahan mine outfall would be continuous throughout the sampling period. Based upon observations made by the sampling team, it appears that no flow occurred during the entire month of July. This circumstance casts doubt upon the hypothesis that the heavy metal ion concentration would be the greatest near the mouth of the outfall, since the waters of the Cove are either ebbing or
Holbrook Cove

flooding most of the time. It seems more logical that, if heavy metals are concentrated in the area, the effects would be most noticeable in the deep water pockets north and south of the outfall.

In examining Figures 5.3, 5.4 and 5.5, it appears that Chlorophyll 'A' concentrations are greatest at a depth of about three meters and least at depths of six meters or more. There does not appear to be a significant variation related to distance from the Callahan mine outfall.

It should be noted that the samples were all collected during a flood tide. The samples for stations 1A, 1B, 1C, 2A, $2 \mathrm{~B}, 2 \mathrm{C}, 3 \mathrm{~A}$, and 3 B were collected during the morning of July 26 . The samples for stations $3 C, 4 A, 4 B$ and $4 C$ were collected during the evening of July 26 . The samples for the remainder of the stations were collected during the morning of July 27.

Due to the violation of the basic assumption relating to continuous flow from the Callahan mine outfall, it is impossible to draw any conclusions with respect to the effect of the outfall upon the Chlorophyll 'A' patterns in Holbrook Cove.
5.2.5 Recommendations

In future attempts to determine the effects of a source of heavy metal concentrations (as the Callahan mine outfall may be), the water samples should be analyzed for the concentration of heavy metal ions present. This will be difficult since the concentration will be extremely low, but it would appear to be essential if the effect of heavy metals on Chlorophyll 'A' is to be determined with confidence.

Sampling plans should be expanded to permit collection of at least three water samples at three different times at each depth and location. The size of the sampling team should be expanded to permit collection of water samples over the entire grid in a period of not more than six hours (the approximate extent of either a flooding or ebbing tide). This implies that at least three students will be required to analyze the samples. 5.2.6 Procedure (see references 2 and 3)

As soon as possible 25 milliliters of each sample were filtered through a one-inch Gelman Glass Fiber filter and frozen.

The filters carrying the chlorophyll were then homogenized and extracted with 908 acetone solution and fluorated, giving a reading " f_{0}." Each sample was then acidified and another reading taken, "Ea." The amount of chlorophyll "a" per sample in micrograms per liter ($\mu \mathrm{g} / \mathrm{l}$) was derived from the equation "chla $=$ $0.109\left(f_{o}{ }^{-f}\right)$."

REFERENCES

1. Dow and Hurst, Jr., Rehabilitation Problems of the Cape Rosier Open Pit Mine, Dept. of Sea and Shore Fisheries, Augusta, Maine, Nov. 1971.
2. Duxbury and Yentsch, Plankton Pigment Nomographs, J. Marine Res. 15, 1956, pp. 92-101.
3. Richards and Thompson, A Spectrophotometric Method for the Estimation of Plankton Pigments, J. Marine Res. 11, 1952, pp. 156-172.

6.0 BIOLOGICAL EFFECT OF HEAVY METAL POLLUTANTS

6.1 Objective

At Cape Rosier, Maine, a copper-zinc open pit mine has been discharging effluent rich in heavy metals into Holbrook Cove. Recent studies have shown that this type of metal pollutant is harmful to marine organisms, and probably to human health. ${ }^{1}$ In planning this study, it was felt that actual measurements of metal ion concentration in water and sediment at various stations might lead to a better understanding of the effects of these pollutants when correlated with benthic faunal population distributions and photosynthetic primary production in the area. The purpose of this facet of the overall study was to gather data concerning the distribution of the heavy metals ($\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$, and Cd) in the sediments near the outfall, and to correlate these data with the distribution of benthic infauna (in terms of species diversity, abundance of individuals in each species, and biomass) in the sediments.

6.2 Background

In 1968, operations were undertaken by the Callahan Mining Corporation in the area near Goose Pond on Cape Rosier, Maine, to exploit local deposits of copper and zinc ore. The mouth of Goose Pond (Figure 6.1) was dammed, the pond pumped dry, and a large open pit excavation was begun. Sea water is used in the aqueous flotation and ore separation process. This water is pumped from Holbrook Cove from a site adjacent to the outfall (Figure 6.2), and used to the mill processing. It is then dumped into a settling pond, where theoretically all suspended matter is removed. The effluent is pumped into Holbrook Cove through a subsurface outfall pipe. Sump pumps which keep the open pit free of ground seepage also empty into Holbrook Cove. During the four years of operation of the mine, fine sediment suspended in the effluent has entered the Cove and large portions have probably settled there.

It must be noted, however, that the mining operation is not the only source of heavy metal ions. Surface runoff and seasonal

Figure 6.1
Callahan Mine Location

Callahan Mine Complex

APPENDIX C

AN EXAMPLE OF THE USE OF
FIGURE 7.11

Example:
Find Height of Tide at 1125 Hours, July 5, 1972.

Date: July 5, 1972
Time: 1125 EDT 1025 EST
Barometer: 30.30"
From Tide Table (See Appendix B)
Previous Tide Level $=+9.2 \mathrm{ft}$ (High) 0605 Hours
Next Subsequent Tide Level = +0.2 ft (Low) a 1212 Hours
Hours Between High and Lowt $=(1212-0605)=6^{\mathrm{h}} 07^{\mathrm{m}}$
Feet Diff Between High and Low $=(9.2-0.3)=9.5 \mathrm{ft}$
Hours After High Tide $=(1025-0605)=4^{\mathrm{h}} 20^{\mathrm{m}}$
From Nomogram:
Uncorrected Ht $=\quad+2.1 \mathrm{ft}$ Correction for $30.80^{\prime \prime}=\underline{-0.95 ~ f t ~}-0.95 \mathrm{ft}$ Corrected Ht $\quad=+0.55 \mathrm{ft}+1.15 \mathrm{ft}$

drainage fluctuations will alter the erosion of nearby natural ore deposits, and also the resultant metal ion concentrations in the waters of Holbrook Cove. The exact pattern of effluent distributions as driven by currents and tides has not yet been determined, although sampling stations (Figure 5.2) were selected to encompass all possible effluent paths.

Of all the animals in the immediate area, only the benthic infauna have been continually subjected to the heavy metals present in the mine effluent. These animals cannot move appreciably, and thus have had to adapt to the environment of Holbrook Cove. In general, the animals that have evolved to survive in a particular environment (the boreal waters of the Gulf of Maine in this case) have the ability to successfully adapt to the range of environmental variations which occur naturally. However, even these "historical stresses" are occasionally exceeded and individual species succumb. After this stress has passed, the species may either recolonize the area, or another species may nove in and take over the first species ecological niche. The fewer of these overturns there are, the more stable is the biological community. In areas where the "predictability" of the environment is high (few abnormal stresses beyond the tolerance of all the species present), there are many species, each with a small number of individuals, and each adapted to deal with its own narrow range of ideal conditions. Where predictability is relatively low, each species must adapt to a wide range of possible environmental conditions. Since the range of ideal conditions (the niche) of each species cannot overlap with the niche of the species next to it on the spectrum of environmental factors, it is evident that there will be more niches, and thus more species, present in a high predictability environment.

In Holbrook Cove, the influx of heavy metal pollutants can be viewed as an "unpredictable" environmental stress from the point of view of the benthic community. If the community is capable of adapting to this stress, there should be no obvious change in the species composition of this community. This is the "null hypothesis" of this investigation. In order to test this hypothesis, some quantitative measure of the species diver-
sity must be employed. Several are in use at present. The rarefaction analysis method of Sanders ${ }^{2}$ shows the diversity graphically, although computation and data presentation are cumbersome and tedious. The information function of Shannon ${ }^{3}$ is simpler. The number of individuals of each species in the community is calculated as a fraction of the total number of individuals in the communty. This fraction, P_{i}, is then iterated over all species, and then the value of $\because p_{i} \log _{2} p_{i}$ is calculated for the community. This gives a value which is sample size-independent. The application of this function to biological systems has recently been questioned by Hurlburt, ${ }^{4}$ who proposes several alternate diversity indices. Once all data are assembled in this investigation, both Shannon's and Hurlburt indices will be employed.

All organisms present in each sample must be identified and counted. For practical purposes, this is impossible. The sediment must be sieved to remove very small sediment (some small animals are obviously lost in the process). Reish ${ }^{5}$ calculated the optimum screen mesh size to maximize animal reter tion and minimize the extensive labor necessary to sort the samples. In practice, there is also an optimum number of grab samples to be taken at each station to assure that all species it the community are represented in each station sample. This must be determined in situ, after a few samples have been sorted.

In Holbrook Cove, a grid of sampling stations was laid out (Figure 5.2) in the waters near the outfall based on the sediment metal concentrations determined by the Federal Water Quality Administration ${ }^{6}$ in the immediate area. One objective is to duplicate the FWQA study in more detail for a small area. Hopefully, contour charts for the levels of copper, zinc, lead and cadmium, as well as charts of the species diversity indices may be drawn from the data resulting from sampling the stations on the grid. Correlation tests on these data may yield interesting results.

Since species diversity in this case may be influenced by other factors, these must be investigated and their influence on the community assessed, the 1971 Summer Laboratory report
(MrTSG 72-3) investigated temperature, salinity, nutrients, dissolved oxygen and currents. No abnormalities were evident. Other phases of this investigation (Sections 5.1 and 5.2) duplicated portions of those studies, again revealing no abnormalities. Sediment particle size distribution does play a significant role in determining benthic commonity structure. ${ }^{7}$ Most samples in the area were composed of 60% silt, 20% clay and 20% fine sand. However, several stations were located on bare rock, or on the shallow sill of glacial sand and gravel that forms the western end of Holbrook Cove. This is a biological community very different from that found in the mud of deeper water, and therefore will not be included in the forthcoming discussion of the biological data with reference to heavy metals.

Cadmium, lead, copper, and zinc were chosen to be sampled because they exist in large enough concentrations to be measured with available Atomic Absorption Spectrophotometry equipment and are thought to be major pollutants in the area. ${ }^{8}$ Chromium falls below AAS detection limits. However, once data has been collected, it is difficult to draw any conclusions as to significant patterns in flow or toxicity or even the relation to the mine effluent. Robert Dow, Director of Research, Maine Department of Sea and Shore Fisheries, reports "Since exploratory drilling, stockpiling of ore-bearing rock, de-watering of the old mine shaft, and pumping out of the rain-filled pit behind the newly constructed dam at Goose Falls, heavy metal levels in clams, sediments, and rock weeds cannot be interpreted as background only. This significant and dramatic increase in all three media after ore separation can be wholly attributed to the plant operation and the discharge of effluents into Goose Cove." ${ }^{9}$ The Federal Water Quality Administration, now the Environmental Protection Agency, is more conservative in its correlation between toxic metal concentration and the mine effluent, but recommends that public water supplies in the area be monitored due to high lead concentration at two of their sample stations. ${ }^{6}$ It should be noted here that this report has been criticized by Dow and other Maine state officials. ${ }^{l 0}$ Tidal stage,
climate and geological makeup affect concentrations of trace metals, but it is not yet fully understood how and to what degree. In addition, agreement as to whether sediments adsorb toxic ions, rendering them inert or whether they are a continuing source of contamination has not been reached.

It has been found that heavy metals do not concentrate along trophic levels. ${ }^{11}$ In that particular survey of the Illinois River, the order of concentration magnitudes of Cu, Ni, Fe, $\mathrm{Pb}, \mathrm{Cr}, \mathrm{Li}, \mathrm{Co}, \mathrm{Cd}$ was as follows: sediments > worms > clams $>$ fish > water. Zinc was found in greater concentration in clams than in worms. According to a report by Dow on "Estuarine Communities and Pollution,"12 "Evidence does not support the assumption that heavy metals in estuarine sediments, marine algae, and shellfish are directly related to the level of these metals in the overlying waters." It is important, therefore, to measure metal concentrations in mud and organic samples as well as in the water. The sand worm, second only to the blood worm in economic value per unit weight to the Maine fishing industry, has a reported toxicity threshold of about 0.1 parts per million copper (Raymont and shields, cited by Dow). ${ }^{8}$

A previous study of the waters around Cape Rosier showed copper concentrations ranging from 0.1 to 0.4 PPM. ${ }^{8}$ Dow believes that lead is probably the most hazardous metal pollutant at the mine site for both humans and commercial shellfish. ${ }^{12}$ A study of the effect of cadmium upon humans is being conducted intermittently by M.I.T. Human intake of toxic metals comes through drinking water sources and consumption of shellfish. In particular, bivalves have the ability to concentrate heavy metals to levels greater than those found in their environment.

6.3 Results

The analysis of the 25 Holbrook Cove sediment and water samples for heavy metal concentrations and benthic fauna has not been completed at this writing. Shortages of equipment availability (mostly an inability to gain access to AAS equipment) and difficulties with impurity interference (Section 6.6) have hindered the determination of heavy metal concentrations. It is expected that these difficulties will have been overcome to
allow completion of AAS analysis by March 1973.
Benthic faunal sorting and species identification is also proceeding slowly. The 0.25 mm screen mesh size, as determined from Reish's ${ }^{5}$ analysis, used in sieving the grab samples causes the retention of a large volume of materials, which must be picked through under a dissecting microscope. Average sorting times have been in excess of 20 hours for each of the three samples sorted thus far.

A basic difficulty in the faunal analysis concerns species identification. Of the 52 positively identified polychaete worm species taken in Holbrook Cove in the FWQA study, ${ }^{6}$ only 24 are named in Knowlton's ${ }^{13}$ checklist. Knowlton acknowledged that his checklist is not "all-inclusive," even though he, his coworkers and his students have sampled along the whole Maine coast for a number of years. Significantly, the two dominant polychaete species, Aricidea jeffreysii and Nephthys incisa, representing 38% and 17% respectively of all individuals taken in Holbrook Cove, have never been found by TRIGOM researchers and are thus not included in Knowlton's checklist.

The most abundant polychaete species in the samples sorted thus far has not been identified as yet. There is some internal disagreement about whether two species are being considered as one in this case. Until this is resolved, no species diversities can be calculated.

Some trends are apparent, however. Biomass and number of individuals appear to be at a minimum at the station closest to the mine outfall; i.e., there are fewer individuals and the individuals appear to be smaller near the outfall. This could indicate an adverse influence of the effluent on the biota, but it is obviously too early to draw any correlations.

Other data would be valuable in addition to sediment faunal data. An attempt will be made to analyze locally collected bloodworms ${ }^{14}$ (Glycera dibranchiata), sand worms ${ }^{14}$ (Nereis virens), and clams (Mya arenaria) for heavy metals in their tissues. Several attempts were made to raise Nereis virens in aquariums in the laboratory, with the ultimate intention of studying the effects of various concentrations of heavy metal ions introduced into the
sea water. However, each time, high natural worm mortality was observed due to high ambient temperatures, and it was finally concluded that the necessary refrigeration was not available, so the project was abandoned.

6.4 Conclusions

As stated before, sample analysis is not yet complete, so no conclusions are possible at present.

6.5 Recommendations

During July 1972, the Callahan Mining Corporation was beginning to raise salmon in a fish trap floating in Holbrook Cove. They planned to monitor the metal concentration in the salmon flesh, with the ultimate intention of marketing the salmor on a large scale. In their proposal, the deep open pit would be filled with sea water and used for fish culture. Considering the remarks made by Dr. Ruth Patrick, ${ }^{15}$ this would be highly undesirable.

As of July 1972, the mining operation had apparently been closed down. Weir Ditch, which had poured effluents into Weir Cove on the southern side of Cape Rosier, had been another major source of heavy metal contamination. As of July 28 , its seaward end had been filled in. Although monitoring of the site should be continued, it is probably not within the capabilities of the student Summer Ocean Engineering Laboratory to continue the systematic sediment monitoring on a large scale, recognizing the di: ficulties which were encountered attempting to use analytical techniques and equipment and the great amount of time necessary sort benthic sediment samples. However, monitoring of metals in worms and clams in the Cove is relatively simpler, and should be continued if AAS equipment is available.
6.6 Detailed Procedure
6.6.1 Sampling Plan

A grid pattern consisting of 24 stations was selected on the basis of previous sampling and analysis done by the FWOA. ${ }^{6}$ Rasically, a 3×8 pattern was laid out in the channel separatir Holbrook Island and Cape Rosier. If time allowed, multiple sec: ment samples would be taken at each station, assuring adequate sampling of the benthos.

Sampling Technique
Samples were taken with a modified Petersen grab sampler at most stations. Some stations were coarse gravel or bare rock, preventing adequate grab sampling. The grab was handoperated from the deck of the lobster boat.

All samples were sieved as soon as possible after return (usually within 6 hours) through 0.25 mon sieves, preserved with 10% formalin, and buffered to saturation with sodium borate (preventing calcareous shell decomposition). Subsamples for AAS analysis were placed in acid-rinsed containers and preserved with $2-3 \mathrm{ml}$ concontratod HNO_{3}. 6.6 .3 Sample Analysis

Sorting of benthic samples was accomplished under low magnification microscopy. All animals retained by the sieve were transferred to a methyl alcohol preservative. Identification was dccomplishod using standard available keys.

Anatysis of sediment and water samples will be done by atomid: Absompton spertrometry using Jarreil Ash instrumentation. 'The methon followed wilf be the stancard methods used by the Envimoment Drouection Amone, ${ }^{16}$ with minor alteration by the M.I.T. lab. Fithough motal ion concentrations of some of the Gonse falls stations probably fall quite low, previous surveys of the aroa (Fwon) ${ }^{6}$ have not found it necessary to use special low detection limit metrods of analysis, especially since interferences are more common with these methods.

Interferences known as matrix interferences occur when there are high concentrations of acids or dissolved salts, as would be the casc with the samples consjdered here. These are controlled by dilution or by matching the concentrations of major constituents in samples and standards. When there is no way of matohing concentrations, the method of addjtions ${ }^{17}$ is wsed. For analysis of the samples taken from Holbrook Cove, a rinse to remove sodium interference will be adcquate. Several runs will be made to determine statistical confidence intorvals.

REFERENCES

1. Zwick, David and Marcy Benstock, "The Danger. Water Wasteland." Bantam Books, Grossman Publ., N.Y., 1971.
2. Sanders, Howard T., "Marine Benthic Diversity: A Comparative Study." Amer. Natur., 102: 243, 1968.
3. Shannon, Claude E., "A Mathematical Theory of Communication." Bell System Tech. Journal, 27, 1948, pp. 379-423. 623-656.
4. Hurlburt, Eric, "The Nonconcept of Species Diversity: A Critique and Alternative Parameters." Ecology, 52 (4), 1970, pp. 577-586.
5. Reish, D. J., "A Discussion of the Importance of Screen Size in Washing Quantitative Bottom Samples." Ecology, 40, 1959, pp. 307-309.
6. Federal Water Quality Administration, 1970. Effects of Strip-Mine Discharges on the Marine Environment near Cape Rosier, Maine. FWQA, Needham Heights, Mass.
7. Sanders, Howard T., "Benthic Studies in Buzzards Bay. Animal-Sediment Relations." Limnol. and Oceanogr., 3, 1958, pp. 245-258.
8. Dow, Robert L., Toxic Metals in the Marine Environment, First Maine Environmental Congress. Maine Dept. of Sea and Shore Fisheries, Augusta, Maine, 1969.
9. Dow, Robert L., Influence of Effluents at Cape Rosier, Maine Dept. of Sea and Shore Fisheries, Augusta, Maine, 1971b. Unpublished report.
10. Dow, Robert L. and John W. Hurst, Statement given at the Environmental Improvement Commission Public Hearing, Blue Hill, Maine, concerning waste discharge license application of Kerramerican, Inc. (revised), Maine Dept. of Sea and Shore Fisheries, Augusta, Maine, 197la.

Il. Dow, Robert L., Estuarine Communities and Pollution, Maine Dept. of Sea and Shore Fisheries, Augusta, Maine, 197la. Unpublished report.
12. Mathis, B. J. and T. F. Cummings, "Distribution of Selected Metals in Bottom Sediments, Water, Clams, Tubificid Annelids, and Fishes of the Middle Illinois River." Research Report \#4I, Water Resources Center, University of Illinois, Urbana, IIIinois, 1971.
13. Knowlton, Robert E., "Preliminary Checklist of Maine Marine Invertebrates." Publ. No. I, The Research Institute of the Gulf of Maine, Portland, Maine, 1971.
14. Dow, Robert L. and J

States Marine Fisherieseaser, "Marine Bait Worms." Atlantic Florida.
15. Dow, Robert L. and John W. Hurst, "Rehabilitation Problems Shore Cape Rosier Open Pit Mine." Maine Dept. of Sea and
16. Environmental Proteotion Unpublished report. Analysis of water and Wastes." 1971. EPA, Cincinnati, Ohio,
1.7. Perkin Elmer Corp., "Analytical Methods for AAS." Norwalk,
Conn., 1971.

7.0 INSTRUMENTATION

7.1 Karman Vortex Trail Current Meter

7.1.1 Objective

The basic goal of this project is the evolution of a compact and reliable current velocity measuring device utilizing the regular velocity-dependent oscillation of vortices behind a blunt object in a moving fluid. Several general design criteria were established: (1) The instrument must be capable of being set and monitored without diver assistance; (2) the output of the instrument must be recordable on magnetic tape;
(3) data reduction should be convenient.
7.1.2 Background

Work was carried out during the 1971 M.I.T. Sea Grant Summer Laboratory based on similar objectives (see M.T.T. Sea Grant Report Number 72-3). These attempts were unsuccessful. The experience gained at that time allowed the successful redesign of the instrument during the 1972 Summer Lab. The basis of operation of the instrument is the velocity-dependent vortex shedding of a blunt object moving with respect to a fluid. The wake pattern generated by this object is known as a Karman Vortex Trail. This wake pattern is characterized by periodic shedding of vortices from alternate sides of the blunt object. Each shed vortex moves downstream causing lateral movement of the fluid in the wake of the object. The instrument is based on the detection of this movement. Here the magnitude of movement is not important, but rather the frequency of the change in direction of the fluid behind the blunt object is desired and, thus, the frequency of vortex shedding. This frequency is then empirically related to the velocity of fluid flow, through the calibration of the meter.

7.1.3 Resuits

The final results, based on a rather short testing period of one day off the dock at Castine and three days at varying locations in Holbrook Cover, were in general successful. The instrument, coupled with a simple oscillator, recorder and timer on the surface, provided data at half-hour intervals over most of the test period. The circuit interfacing the instrument with the recorder, however, was unreliable and created a large amount
of unreadable data. Data reduction, while intended to be accomplished electronically, was easily handled aurally, each twentyfour hours worth of collected data requiring approximately fortyfive minutes to put into tabular or graphic form. Graphical results of several periods of monitoring are shown in figures 4.2 and 7.1. The validity of the data is difficult to determine. At present, thore is no other tabulated data concerning current flow in the test areas. The results do show fair correlation with times of high and low tide. For example, in figure 7.1 no current was evident shortly before high tide at 2324 hours and low tide at 0554 hours, the times being appropriate for dockside at Castine. The irrcqularity of the current profile presented for Holbrook Cove may well represent the apparent current surges which were noted on several occasions by the observers of the current drogues used in this area, as described in section 3.0 of this report.
7.].4 Conclusions

Although the test period was too short to allow conclusive ovaluation of the instruments reliability, sensitivity and range in open water, the results would indicate that the meter offers a valid substitute for impeller-type current meters, when measuring low velocity currents. The instrument holds up well under rough treatment and requires no diver assistance in mooring.

7.1.5 Recommencations

The success achieved, though limited, would recommend further work on the development of this instrument as a component of a complete system for current monitoring. Most seriously needed would be the perfection of the interfacing electronics. Completion of the digital recording system which was undertaken during the lab would offer considerable advantages and possibilities in the area of data reduction. Concerning the meter itself, one could use pressure transducers as the means of converting the fluid motion to a modulated electric signal, replacing the present arrangement of fin and photocell.

7.1.6 Detailed Procedurc

Preliminary design of the instrument took place in the months after the 1971 Summer Lab, and was based on experience

$$
-57-
$$

Figure 7.1
Kamman Vortex Trail Current Meters
Results at Castine
gained during the lab. An attempt was made to build a current meter using the vortex shedding phenomenon. The attempt involved trying to sense the frequency of vibration of a wire placed in a fluid flow. The presence of the wire caused the development of a Karman Vortex Trail. In simplified terms, the periodic lateral displacement of the fluid caused the wire to vibrate at the frequency of the vortex shedding. The attempt was then made to sense this vibration using electromechanical means. Due to the very small displacements and energy transfers involved, little success was achieved. It was decided to increase the dimensions to afford greater ease in detection of the movement of the fluid. A one-inch cylinder was used to generate the vortex trail. Sensing of the frequency of vortex shedding was done by a fin mounted on needle bearings in the flow behind the cylinder. Electrical pickup was accomplished by placing a magnet on the fin and positioning a reed switch close enough to be activated by the magnet. This version provided linear response from three-tenths of a knot to just below two knots with sensitivity to one-tenth of a knot. The instruments' dimensions were approximately two inches by three and one-half inches by six inches.

The primary shortcoming of the instrument was that its range of operation was too high to be considered for use in tidal current surveys. Several things were done in an attempt to lower the range of response. First, the effective Reynolds number of the instrument was increased by providing a venturi at the intake of the meter, thus increasing the current velocity seen by the instrument over that of the ambient flow. Little improvement was noted. It is believed that the force imparted to the sensing fin by the fluid movement was of the same order as the force exerted by the magnet on the reed switch, so the sensing of the movement of the fin was relegated to a photo cell rather than the proximity switch and magnet. Tests demonstrated an extension in the effective range of instrument down to about three inches per second. It was still apparent that more energy must be imparted to the wake to obtain greater sensitivity. To achieve this end, an ellipse replaced the cylinder. It was oriented with
the major axis perpendicular to the flow. It had been observed that the ellipse generates a wake that is wider than its greatest dimension whereas the wake of a cylinder is roughly the same width as its diameter. The meter now showed a response down to one inch per second ($1 / 20$ of a knot) under test tank conditions. 7.1.7 Fabrication

The physical layout of the meter is shown in Figure 7.2. The fin in the wake of the cylinder responds to the movement of the fluid. This lateral movement becomes a rotational movement of the wires used to support the fin. The interposer, rigidly attached to the upper supporting wire moves back and forth between the photocell and light source, which modulates the output of the oscillator. The prototype instrument had dimensions of two inches by six inches by twenty inches. The large length was provided in an attempt to reduce turbulence encountered by the ellipse caused by the leading edges of the duct. All electronics, except the photocell and light source, are designed to be on the surface, thus limiting the amount of waterproofing that must be accomplished. The light source and photocell were cast in plexiglass with their individual leads connected to a four-wire hydrophone cable to the surface. These connections were sealed by simply dipping the soldered joints in fiberglass resin. No trouble was encountered in this method of waterproofing. The original system design called for the meter to be connected to an analog-to-digital converter which would feed digital data to a recorder. This equipment was not ready for use, however, so a simpler method of providing recordable signals was used. The photocell, having a change in resistance which was dependent on the change in light to which it was exposed, was used as part of an astable multivibrator. As the resistance changed, the output frequency of the multivibrator changed. All frequencies were in the audio range and were easily recorded. As was mentioned earlier, the data was readily reduced aurally. This configuration results in a signal which is frequency-modulated at the rate with which the ellipse sheds vortices.

Figure 7.2
Karman Vortex Trail Meter Layont

7.1.8 Calibration

Calibration was carried out, using the instrument towing carriage of the wave tank in the Hydrodynamics Lab at M.I.T. This was used in preference to the ship model towing tank, due to the very low control speeds which could be achieved. Response of the meter from one inch per second to twelve inches per second was obtained. Calibration data is shown in Figure 7.3 along with a curve showing theoretical response. The theoretical curve is based on the following empirical formula relating frequency of vortex shedding to fluid velocity:

$$
n=\frac{S V}{d}
$$

where n is frequency, s is the Strouhal number, v is the velocity and d is the characteristic diameter (the major axis of the ellipse, $1-7 / 16^{\prime \prime}$). The Strouhal number is constant in this regime of Reynolds number (greater than 1000). After the conclusion of operations in Castine, the ship model towing tank was used to determine the angular response of the unit to test the feasibility of using the instrument as a current direction indicator. It was hoped that the response would be such as to allow two of the instruments to be mounted in a fixed position at right angles to each other to give vectoral information as well as data about the magnitude of the current. Tests showed that the response of the instrument intercepting the current flow at angles of greater than thirty degrees was too poor to allow such a configuration.

7.1.9 Meter Implacement

The mooring of the current meter is designed to be as simple as possible. To maintain a stationary position a fifty-pound weight is used at the bottom. A line runs directly up to the meter at the desired height above the bottom and is fastened rigidly to the housing about eight inches from the leading edge, on the underside of the instrument. Leading upward from the same position on the top of the housing is a line to a submerged float. This float maintains the vertical position of the meter. A short line is attached on the float line and leads to the tail of the instrument to keep it horizontal. The electrical cable

Figure 7.3
Karman Vortex Trail Current Meter Calibration Curve
(for power and data transmission) is attached at various points to the instrument support cable and is supported at the surface by its own float and a five-quart pressure cooker which provides the watertight housing for the electronics and recorder. A retrieving line is attached to the submerged float and again supported by a surface buoy. No trouble was experienced with this mooring for this instrument. It appeared to allow adecruate freedom for the instrument to orient itself with the current flow and showed no sign of drifting off station. 7.2 Impeller-Driven Current Meter
7.2.1 Objective

The objective of this project is the development of a cos pact and reliable current velocity measuring device utilizing an impeller. Several general design criteria were established: (1) The instrument must be capable of being set and monitored without diver assistance; (2) the output of the instrument must. be recordable on magnetic tape; and (3) data reduction must be convenient.

7.2.2 Background

An impeller current velocity measuring device was designe for the 1971 Summer Ocean Engineering Laboratory (see Figure 7.4). This device consisted of a seven-inch-diameter cylindrica housing made of plexiglas tubing, a 24 -inch-diameter impeller fashioned from fiberglas, a plexiglas shaft which was driven by the impeller and turned a 5 -inch-diameter disc (also fabricated of plexiglas) in which 60 small holes had been drilled at equal intervals on a circumference of four and one-half inches. The disc was used to alternately shadow and expose a photocell to a light source. The unit proved to be cumbersome and unreliable; hence a redesign was undertaken.

The design of the 1972 impeller curcent velocity meter incorporates many improvements. These include: reduction in size and bulk, an improved impeller, and a better harness (used in securing the meter to the mooring). In the redesign a light source and sensing device (photocell) are sealed in the flanges fore and aft of the impeller hub. The impeller hub has several holes drilled parallel to its axis through which light passes

Page 64

Figure 7.4 Tmpeller Current Meter (1971 Versinn)
when one of the holes is lined up with the light source and the sensing device. In this way several pulses are received from the meter for each revolution of the impeller, permitting accurate readings at low current velocities. The leads from the light source and the sensing device are led into a hydrophone cable, and through the cable to the surface instrument package. The instrumentation package was placed in a pressure cooker which also served as a float. The pressure cooker contained a motorcycle battery, a small amplifier for the signal from the meter, a clock, and a cassette recorder.

7.2.3 Calibration of the Impeller Current Meters

The current meters were calibrated in the M.I.T. towing
tank. The major problem which had to be overcome was that the fluorescent lighting in the towing tank interfered with the photocells in the transparent current meters. This was rectified by shutting off the lights in the towing tank during calibration runs. The current meters were painted black before they were shipped to Castine, Maine, to prevent the ambient light from interfering with the operation of the meters when they were moored at the test sites.

The calibration procedure for the three meters constructed in preparation for the 1972 Summer Ocean Engineering Laboratory consisted of towing the meter at speeds of from 0.2 knots to 1.5 knots and employing a frequency counter to ascertain the pulses per second received from the photocells for each speed. It should be noted that the calibration results from all three meters are identical. The empirical correlation between the pulses per second and the speed is:

```
speed (knots) = 0.25 + 0.53 (pulses/second)
```


7.2.4 Mooring

The mooring of the current meter is fairly simple (see Figures 7.5 and 7.6). A 50 -pound block is used as an anchor. A line is passed up from the anchor to the meter and then to a float with 25 pounds of buoyancy moored just beneath the surface. Thus there is a 25 -pound tension in the line at all times. A slack line attached to the hydrophone cable is led to the instrument package floating on the surface. A buoy is attached to the

subsurface float to mark the meter. This arrangement permits the cassette to be changed without disturbing the current meter. 7.2.5 Conclusions

The meters performed as designed. The problem with ambient light interfering with the photocells was overcome by making the flanges and impeller hub opaque. A problem developed with mooring harness in that the meter was attached at its center of gravity and when it was raised or lowered it tended to try to rotate until its axis lined up with the mooring line. In one such case the impeller of one meter was broken.

7.2.6 Recommendations

The mooring arrangement should be redesigned to correct the deficiency exhibited when the meter is raised or lowered during implantation or retrieval. A device that will measure current direction should be devised to act as a companion instrument so that both current direction and velocity can be measured at any given instant and recorded. 7.3 Current Direction Indicator
7.3.1 objective

The major inadequacy of the current metering equipment became apparent during the initial weeks of the project. This inadequacy lay in the inability of the meters to distinguish current direction. It was decided that a companion instrument capable of yielding data on current direction was required. Two basic criteria were established: (1) The instrument should not require diver assistance; and (2) the output should be compatible with the digital recorder which was under development for use with the current meters.

7.3.2 Background

During the 1971 Sumner Ocean Engineering Laboratory, construction of a current direction indicator was attempted using a variable capacitor which tuned an oscillator circuit whose output was recorded in analog form (see Sea Grant Report No. MITSG 72-3). The instrument housing and capacitor were moored in a fixed position and a vane (which was allowed to swing with the current) varied the capacitor position. This proved very cumbersome, since it required a three-point moor, a buoying
system to maintain the indicator's position vertical, pressurization of the instrument, and considerable diver assistance. The large frictional resistance between the capacitor's shaft and the watertight seals caused problems.

The requirement that the direction indicator be a companion to the current velocity metering devices caused a drastic departure from the concept of the current direction indicator attempted in 1971. The primary changes in design criteria were as follows:

1) Since the housings of current velocity meters rotate to maintain their alignment with the current, then the housing of the current direction indicator must also rotate and the sensing device must maintain a constant orientation (as the sensing device in a gyro or magnetic conpass). In the 1971 design the housing maintained a constant orientation and the sensing device oriented itself to align with current.
2) Since the data transmitted from the current velocity metering devices are in digital format, the data transmitted from the current direction indicator must also be in digital format to permit the use of the same recording and data reduction equipment. In the 1971 design the data were transmitted in an analog format.
3) Since the designs of the current velocity meters were based upon a criterion of minimal diver involvement, this criterion must also be invoked in the design of the current direction indicator. As has been previously stated, the 1971 design required extensive diver services.

7.3.3 Results

To meet the design criterion that the housing of the cur rent direction indicator must rotate and the sensing element must maintain a constant orientation, the principle of the magnetic compass card was utilized. It was recognized that four binary bits will permit the transmission of sixteen digital
information bits. This characteristic can be utilized to identify digitally sixteen $22-1 / 2^{\circ}$ sectors. It is believed that, for this application, further refinement of current direction would not be sufficiently useful to justify the additional complexity of additional binary bits.

A magnetic compass card was fabricated. Four concentric circles were drawn on the card and interrupted slots were cut on the concentric circles such that rotation of the compass card with respect to the housing would alternately interrupt or pass light from one side of the card to one or more of the four photocells located in a radial line on the opposite side of the card and spaced to coincide with the four concentric circles. The sixteen sectors are identified digitally by determining which of the four photocells are exposed to the light source.

The instrument did not reach the test stage due to the late starting date. The housing is a four-inch i.d. plexiglas tube with end caps threc-quarters of an inch thick fitted with o-ring seals. The final version of the compass card uses two permanent alnico matnets and is mounted on needle bearings. The sensing unit's functional resistance to rotation was very small, but it was sufficient to affect the reliability of the orientation of the card with respect to the earth's magnetic field. The lightsensirg unit was put together and tested in the housing. No problems were found in sensing the card position using this method. However, it was discovered that a small amount of iron in one of the photocelis affected the magnets on the card. 7.3.4 Conclusion and Recommendations

The success of the sensing method makes further attempts at development of this instrument attractive. A compass card with stronger magnetic units and less rotational friction is required. If fabrication proves too difficult, a commercial compass card can be adapted. If photocells which do not affect the compass card cannot be obtained, then perhaps light pipes can be used in the proximity of the card. Completion and testing of the digital recorder and the interfacing circuitry is yet to be accomplished.
7.4 Oxygen and pH Meters

7.4.1 Objective

The ambitious sampling project encompassed by the Holbrou Cove Survey made the automation of the measurement of the environmental factors extremely attractive. The objective of this project is to provide instrumentation that will make the measur ment of the oxygen content and pH of water samples a simple. accurate procedure.

7.4.2 Background

During the 1971 Summer Ocean Engineering Laboratory, preliminary measurement of dissolved oxygen concentrations were made using the Winkler iodometric titration method. This proved to be time-consuming and laborious. In planning the biological investigation related to detemining the effect of the callahan mine outfall upon the ecology of Holbrook Cove, it became apparent that it would be necessary to monitor all environmenta conditions including the concentrations of dissolved oxygen in and the pH of each water sample. It was therefore decided to obtain a polarographic oxygen electrode and to construct an oxygen meter for use with this electrode. In addition, a sinpli design for a pH meter was noted in the November 1968 edition of Popular Electronics and it was decided to construct this device for use in the survey.

7.4.3 Results

Both the oxygen and pH meters were constructed. Due to limitations of time, the oxygen meter was not used. The $\mathbf{p H}$ me: was constructed, but the proper microammeter was not available and the project's volt-ohm meter was substituted. This substit tion proved unsatisfactory due to the high impedance of the volt ohm meter rendering the meter deflections too small to permit determination of the pH of the water samples to the desired limits of accuracy. The meter was tested in buffer solutions whose pH values were $4.0,7.0$ and 10.0 and the readings appeare to be correct within the limits of accuracy permitted by the volt-ohm meter.

7.4.4 Conclusions

Both meters appear to be operational and require only minor modification (in the case of the pH meter) for increased accuracy, and calibration (in the case of the oxygen meter). They will greatly simplify the measurements of oxygen content and pH .
7.4.5 Detailed Description of the Oxygen Meter and Probe

The polarographic oxygen probe consists of a silver tube whose diameter is one centimeter which acts as an anode and contains a gold cathode at its center. This cathode is maintained at a constant voltage of -0.8 volts with respect to the anode. Both the anode and cathode are coated with either teflon or polyethylene which permits only the gaseous oxygen to diffuse through the coating to the electrodes. This coating prevents the other ions present in sea water from coming in contact with the electrodes. The space between the teflon (or polyethylene) film and the cathode is filled with a fifty percent normal solution of potassium hydroxide.

Conductance between the anode and cathode is produced by the following chemical reaction:

At the gold cathode
4 electons $+\mathrm{O}_{2}-4 \mathrm{OH}$
(Thus, one mole of oxygen produces the flow of four electrons)

At the silver anode
$4 \mathrm{Ag}+4 \mathrm{OH}-2 \mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}+4$ electrons
(Thus, the conductivity between the anode and cathode is proportional to the oxygen concentration)

The purpose of the oxygen meter is to translate the conductance at the oxygen meter probe to a voltage which can then be read on a standard voltmeter. The operation of the oxygen meter is a follows (see Figure 7.7).

1) A reference voltage is obtained by adding in series a silicon diode and a germanium diode forming a voltage drop of 1.0 volts, which is nearly independent of current flow.

[^2]2) The reference voltage (1.0 volts) is maintained at the inverting input of the first stage of the operational amplifier by virtue of its high gain (200,000) and using negative feedback.
3) An output voltage is developed when the conductance of the probe permits current to flow through the thermistor. The output voltage is directly proportional to the current flow and hence to the oxygen concentration at the probe.
In order to calibrate the oxygen meter, the following procedure is used:

1) Disconnect the oxygen probe from the oxygen meter and check to be sure the voltmeter readout indicates zero voltage. If the voltmeter does not indicate zero voltage, place the oxygen meter switch in the "null" position and adjust the first stage offsetnull variable resistance pot until the voltmeter indicates zero volts.
2) Place the oxygen meter switch in the "on" position ancl adjust the second stage offset-null variable rosistance pot until the voltmeter again indicates zero volts.
3) Dlug the oxygen probe into the oxygen meter. Check to be sure that the oxygen meter switch is in the "on" position. Place the probe in a solution of known oxyqen concentration and adjust the calibration variable resistance pot until the voltmeter indicates a voltage that corresponds to the oxygen concentration of the solution being used for calibration.
7.5 Automated Data Recorder

7.5.1 objective

The objective of this project is the design and construction of an automated system to: a) convert analog data to digital format; b) record the converted data on magnetic tape: and c) automatically transcribe the recorded data onto IBM cards for data processing. The system is to have the capability of receiving, converting and recording from several sensors during any given time span.

7.5.2 Background

Plans for the Holbrook Cove Survey called for the deployment of current velocity meters at several locations and to leam these instruments in place to measure current data over considerable time spans. It did not appear practicable to expect an operator to man these instruments and record the data manually. In addition, it was anticipated that a great many observations were to be recorded and the time and effort involved in transcribing this information from analog format into machinereadable digital format seemed prohibitive.

7.5.3 Results

The automated data recorder is designed and various of the elements have been constructed and tested. The concept appears attractive and feasible although there are still technical difficulties to be overcome.

The automated system consists of several units. These inch

1) Encoder (one for each sensor)
2) Decoder (one for each automated system)
3) Recorder (one for each automated system)
4) Power Supply (one for each automated system)

The encoder circuit has two major states: analog to digiti conversion and data recording. The encoder is designed as a "bus" instrument to allow for general multiplexing of any number of sensors. During the first major state, the time (in seconds) since the initializing pulse which cleared all counters and flip-flops is displayed on the "bus" lines. Each sensor's output has its own counter which keeps a running count of the sensor's impulses until the end of an interval determined by the time signals on the "bus" and a gate. Near the end of MSl (majc: state 1), a tape recorder is turned on to allow the tape to cone up to speed. By the beginning of MS2 all analog to digital conversions are complete and the recording on the cassette conrecorder can begin. The method chosent technique involved in low-speed chosen is based on the standard data from each sensor's counter is to the serial form: start bit, 8 sampled in turn and converted bits. The bits are recorded on data bits (msb first), 2 stop bits. The bits are recorded on the tape by the method of

Frequency Shift Keying (FSK) in which one tone indicates a zero, a second tone indicates a one. This transmission is terminated by a data word of $3770 c t a l$ which serves as an end-of-record mark. The decoder is in two sections. The first is a standard teletype line receiver similar to the one used by Digital Equipment Corporation in their Logic Handbook. The second part converts the eight bits derived from the first part to two hexidecimal characters in Hollerith format. These characters are sent to the relay arivers which cause the relays to simulate a person punching the keys of an IBM 029 keypunch.

No special requirements are imposed on the magnetic tape recorder by the encoder and decoder. The application of the automated data recording system, however, makes it mandatory that it be compact, reliable, and conserve electrical energy. The speed of the capstan drives should be independent of the power supply voltage.

The power supply is any l2-volt dc electrical source. A motorcycle battery was utilized during the 1972 Sumer ocean Engineering Laboratory.

Since the automated system was not completed, a substitute circuit was designed and utilized (see Figure 7.8). This circuit is a standard astable multivibrator, except that one of the timing resistors is replaced by a photoresistor. In addition, a resistor has been added in series with the photoresistor to prevent the resistance in this path from becoming such a small value that oscillation ceases. Astable multivibrators will not commence oscillation if both transistors are saturated. To prevent this condition from occurring, the timing components were selected to insure that they were extremely asymmetrical. The purpose of this circuit is to convert the electrical pulse (generated when the current velocity meter photocell is exposed to its light source) into a voltage which oscillates in the audio range. This oscillating voltage was then used by the magnetic tape recorder to record the pulse as an audible tone on the magnetic tape.

Figure 7.8
Astable Multivibrator Circuit Diagram

7.5.4 Conclusions

The automated data recorder syster is technically feasible. The primary problems encountered are fairly mundane. The power consumption must be decreased if the system is to be operated over the time spans envisioned. The timing and recording components must be reduced in physical size.

The FSK transcriber requires additional design work. Its major problem is that a scheme to generate signals to activate the "skip" and "card release" functions on the IEM 029 keypunch must be worked out.

The substitute astable multivibrator circuit worked, but was not problem-free. The primary problems centered about the photoresistor, which was affected by ambient light conditions. This sometimes caused a frequency change in the audible tone and on other conditions it prevented oscillations.

7.5.5 Recommendations

It is believed that perfection of the automated data recording system will make a significant contribution to the oceanographic data-gathering effort. For this reason, it is recommended that this project be continued.

It is recommended that a redesign substituting mos logic for the existing TTL logic be undertaken to reduce power consumption. This redesign will also make the recorder less sensitive to the power supply voltage.

A review of the frequency and time length of data samples should be made since both affect the power consumption of the data recorder system.

7.6 Tide Gauge

7.6.1 objective

The objective of this project is to design and construct an instrument which will accurately measure and record the fluctuations in the water height during the tidal cycle. This instrument is to be capable of continuous operation for at least 24 hours and is to be able to operate in all weather conditions.

7.6.2 Background

In conjunction with the measurements of current flows in Holbrook Cove, it was desirable to obtain a measurement of the water height at both the southern and northwestern entrances
to the Cove simultaneously. These measurements, which would require the construction of two instruments, would then be used to determine the relative importance of each entrance during the ebbing and flooding tides. After this was determined, it was planned to move one instrument to various sites within the Cove in an effort to further establish the tidal flood and ebb patterns of the Cove.

7.6.3 Results

Due to time limitations, only one instrument was machined in time for field testing. These tests, which occurred during the final days at Maine Maritime Academy, were disappointing because they yielded no accurate data and demonstrated that the machine, as designed and constructed, did not meet the design criteria.

The data obtained from these tests more closely approximated a step function than the expected sine function. A possible explanation for this behavior is that the internal friction of the machine could not be overcome by the small forces generated by the minute tidal changes. Thus, only when the summation of these forces became greater than some critical value, determined by the frictional forces of the apparatus, would the machine begin to scribe, rapidly dissipating the accumulated tidal force. 7.6.4 Conclusions

While the initial results obtained from this machine were unacceptable, the prototype did indicate many specific areas of the design which, if modified, would allow an instrument capable of performing the desired function to be produced. Fundamental to these changes is the consideration of internal friction and the selection of best methods to minimize this force.

7.6.5 Recommendations

The design of this apparatus is best considered as comprised of two components: The first component utilizes a Westclox clock mechanism to power a rotating drum upon which a continuous graph may be scribed; and the second component which reduces (scales) the vertical displacement of the tide and uses the tidal energy to drive a scribe which marks upon the rotating drum. To shield this entire component from the weather, it is entirely encased in a plexiglas case.

The details of the first component, which are found in Figure 7.9, show the rotating drum mounted on a combination thrust and radial bearing and driven by a pulley/belt arrangement by the clock mechanism. A better design would be to utilize a horizontal drum mounted by radial bearings on both ends of the drum. This double mounting will prevent any radial displacement of the drum when subjected to the pressure of the scribe and the consequent binding which occurs when only one bearing is used. Another improvement which suggests itself is the utilization of microchain and sprockets to rotate the drum. This will overcome the slippage inherent in a pulley/belt arrangement at very small angular velocities. A further time check could be provided by a clock-activated scribe, activated at regular time intervals.

The second component, as shown by Figure 7.9, is comprised of a weight and a float suspended from a large sprocket by a chain. The weight and float are designed to travel vertically with the tide, rotating the sprocket wheel, which subsequently drives a small pinion gear against a movable rack which is displaced vertically one-fifteenth the amount of the displacement caused by the tide. Affixed to this rack is a scribe which stays in contact with the drum continuously. If the vertical rotating drum is replaced by a horizontal rotating drum, the rack and pinion assembly can be replaced by an assembly utilizing a screw-activated scribe, which should be an improvement.

As was previously indicated, the primary obstacle to the machine functioning properly is that insufficient energy is generated by small tidal displacements to cause the machine to scribe continuously. As shown in Figure 7.9 , the weight and float are both suspended within tubes for the purpose of damping out any local surface disturbances on the water surface. As shown, a float is placed in a tube open to the sea, while a counterweight is placed in a tube sealed to the sea. This arrangement allows the float to rise and fall with the water admitted to its tube. It is apparent that the top and bottom positions of the float during slack tide define the conditions critical to the proper functioning of the tide gauge. These

Figure 7.9
Tide Gauge Construction
critical conditions are summarized in Figure 7.10. The results of the tests during the Summer Ocean Engineering Laboratory and careful examination of Figure 7.10 lead to the conclusion that both the float and the weight must be increased in size if the gauge is to function as designed. An obvious method of accomplishing this is to utilize a large doughnut-shaped float circumscribing a large sealed tube in which a counterweight is suspended. This improvement would tend to minimize the nonlinearity of the system indicated by the equations in Figure 7.12 . The nonlinearity can also be eliminated by properly calibrating the tide gauge.
7.7 Detailed Bottom Topography of Holbrook Cove
7.7.1 Objective

The objective of this project is to obtain the data required to build a detailed topographical model of the bottom configuration in Holbrook Cove. As a first step it is necessary to define the water height above mean lower low water as a function of time.

7.7.2 Background

It has been noted that some of the prominent bottom features such as rocks and shoals are not indicated on the charts of Holbrook Cove. In order to rectify this deficiency, a careful and systematic program of taking and recording soundings, using a small boat and lead line, is planned.

7.7.3 Results

During the 1972 Summer Ocean Engineering Laboratory there was time to complete only the first step, i.e., prepare a nomogram (see Figure 7.11) that will permit the prediction of water height above mean lower low water as a function of time. During the process of checking this nomogram against observed tide heights at the dock of the Maine Maritime Academy, it was discovered that the scope of the tide was about 12 inches greater than would be predicted using the Coast and Geodetic Survey Tide Tables. An example of the use of Figure 7.11 is in Appendix C. 7.7.4 Conclusions

The tide height observations at the dock at the Maine Maritime Academy agreed with the predictions calculated using

Figure 7.10
Tide Gauge Critical Conditions

$$
\text { way } \frac{=}{E}+4
$$

$$
-84-
$$

$$
+5
$$

Figure 7.11
Nomogram
the nomogram. Based upon the observations, it appears that the corrections to tide height for Castine, Maine (as indicated in the Coast and Geodetic Survey Tide Tables), are in error. The correction for High water should read +1.7 vice +0.7 .

7.7.5 Recommendations

The first step in the process of building the topographical model of the bottom configuration of Holbrook Cove is completed with the preparation of the nomogram. It is recomended that the nomogram be used to correct soundings taken in the subsequent phases of the project to obtain water heights corresponding to mean lower low water depths.
7.8 Bottom Sample Corer

7.8.1 Objective

The purpose of this project is to design, build, and test a corer to obtain bottom mud samples. The corer should be inexpensive and easy to operate.

7.8.2 Background

There were two reasons for choosing this project. One was to obtain experience in designing and building a piece of oceanographic equipment; the second was to produce a corer that would be available for use in the ocean engineering program at Maine Maritime Academy.

7.8.3 Results

In the actual test in Holbrook cove, the unit was Iowered into the water to check the balance. It was then lowered until the messenger hit botton, allowing the corer to fall. When the corer was released, it was observed that the line holding the tripping device, corer and messenger became taut and then went slack. When the unit was retrieved, it was discovered that the line attaching the corer to the tripping device had been severed. The boat used for this test had not been moored and the test site was not buoyed. All attempts to locate the corer failed. 7.8.4 Conclusions

Judging from the observations of the line holding the tripping device, corer and messenger, the corer penetrated the bottom and would have permitted the retrieval of a core if it had not been lost. The design of the corer should be modified
to providu for a steel wire leader for attachment of the corer to the tripping device.
7.8.5 Recommendations

Future tests of this device should be conducted only after the boat has been moored and the site suitably marked so that, in the case of severed lines, the lost units may be located and retrieved. The basic design appears sound, although it is not possibte to state whether or not the samples retrieved using the corer would be sufficiently undisturbed to permit an accurate reconstruction of the boundaries and depths of the sedimentary layers.
7.8.6 Detailed Procedure

The corer consists of a body composed of an internal pipe and an external pipe. On the ends of these pipes are two fittings called the head and tail. These fittings are threaded to fit on the cnds of both pipes. They are designed in such a manner that the outer pipe will take the stress and the internal pipe will retrieve the sample. Once obtained, the sample is removed by pushing the sediment out with a push rod which consists of a wooden tip the same diameter as the internal pipe and a rod longer than the pipe.

On one end of the tripping device is a messenger and on the other side, the corer. The tripping mechanism and arm are all designed so that the whole device, with corer and messenger, will balance in the water. When the device is lowered, the messenger, which has 35 feet of line extended ahead of the corer, touches the bottom and allows the tripping arm to rotate and the corer to fall to the bottom a distance equal to the messenger line length plus four feet (the length of the corer). Once the corer hits the bottom, the whole unit is raised and the sample removed.

APPENDIX A
DROGUE BODY COMPUTER PROGRAMS

APPENDIX A

The first computer program is modified solely by input data. There is no need for a modification of the source program.

One of the first data cards is a parameter decision card specifying which options the user of the program wishes to utilize. This is stated in the program listing. The flow chart points out the various combinations of options possible. Comment cards are permitted at certain points to keep track of special data.

One possible option is the use of data-smoothing subroutines. The preferred smoothing subroutine is spline fit. Spline fit approximates an idealized drafting spline curve through the data positions. If the number of equations (positions) is too small to permit the use of a spline, a least-squares fit subroutine is used.

Another important option is the IAXIS parameter which rotates the axis such that the X coordinates can be plotted and calculated as a function of the Y coordinates.

The spline and least-squares subroutines compute the Y coordinates as a function of the X coordinates. A reversal in buoy velocity will cause infinite looping in the spline and leastsquares subroutines since they will yield two or more values of Y for one value of X. If a buoy reverses direction, the program will terminate the buoy path and restart it in the opposite direction. In cases of vorticity (in the Holbrook Cove Survey), many restarted paths resulted. In those cases, it was specified on the decision card that no interpolated values were desired and that all broken segments should be connected. Because the spline fit subroutine allows the user to specify the placement of the constraints on the equations, the user sometimes supplied cards listing the position of constraints and/or position of output points desired. If the user wished to place the constraint or position of output points, he specified a positive nunber of constraints and output points, with the positions given in X coordinates. If the user wished the program to pick the positions, a negative number was specified. If a buoy back-
tracked, the program itself decided on a number of constraints and output points, and the placement of each.

In order to graphically represent velocities in addition to pathlines, two subroutines placed either a tickmark for times or a line through two or more buoy paths, depending on user specification (e.g., if the distance between ten-minute tickmarks decreased, the buoy was traveling slower. If the distance increased, the buoy was traveling faster).

In the numerical printout part of the program, two types of velocities were computed: a backwards difference velocity and a centered difference velocity. The backwards difference velocity is computed by dividing the distance between the position under consideration and the position at the previous observation by the difference between the time of the observation of the position under consideration and the time of the previous observation. The centered difference velocity is computed by dividing the sum of the distances between the position under consideration and the positions of the previous observation and the next subsequent observation by the sum of the differences between the times of observation of the position under consideration and the times of the previous and next subsequent observations. The subroutine STOREC could be further modified to allow a least-squares or other velocity approximation if the user wished to modify the source.

All sorts, with the exception of TSORT, are interchange sorts, as the number of sorted items cannot exceed 99. The limit on the number of buoys' segments is explained by the fact that the program considers each buoy segment caused by backtracking to be a separate and equal segment (e.g., in the case of vorticity, a buoy input with 99 points may be composed of 20 or more segments, etc.). TSORT takes an already sorted list and puts them in ascending order, in the event that they were originally in descending order.

There are a few limits and constraints that are intrinsic in the source program, and to be changed require the source to be modified. Numerical limits are listed. Other major limits not listed follow. The IWARN array is a controlling factor in
the dumping of input constraints and output positions for the interpolation routines and timelines. If a buoy backtracks, IWARN for that particular buoy is activated. This means that all input constraints are dumped and replaced and that timelines are not allowed on any of the segments (tickmarks are).

Spline is used in all cases except where the number of
points is too close to the number of equations. Then, and only then, is least squares used.

DROGUE BODY COORDINATE
AND VELOCITY CALCULATION COMPUTER PROGRAM

$$
\begin{aligned}
& \text { CIICK A SPIINE FIT CURVE } \\
& \text { CLSO SOIVES EQUATI JNS GIVEH TM IT BY RUCK IH A LEAST SOUARCS WAY }
\end{aligned}
$$ TYMES CALCULATES CUFVES THAT

$$
\begin{aligned}
& F T H \\
& 5 \mathrm{FF} \\
& 7 S 1 T \\
& \text { ND S } \\
& \text { HLI } \\
& \text { IGNS } \\
& \text { COEF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AINTS } \\
& \text { SGUARES FIT }
\end{aligned}
$$

$$
\begin{aligned}
& t \\
& \text { EQUATIONS } \\
& \text { SPITNF AND }
\end{aligned}
$$

$$
\begin{aligned}
& \text { INTERVALS THE TUTPUT POSITICNS } \\
& \text { PUT POINTS IN ASCENOING TRDER IT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MER } \\
& \text { SORT } \\
& \text { TAG-A-LCNG ARHAY } \\
& \text { NPUT POTNTS }
\end{aligned}
$$

ING
R IF
THE Y

$$
\begin{aligned}
& \text { A TAG-A-LCNG } \\
& \text { INPUT PRINTS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EQUATIONS } \\
& V \text { SPLINE AN }
\end{aligned}
$$

 TYINT, I NCRRT, JUSIN,IMLINE
CTANCA/AREA?/ XMAX,XNJN,YAAX,YMIN
CIMAN /APFAT/ TCHAD, NWSTAP.

LTCTAL
GHAFACTFR VAPIAPLES

$$
\begin{aligned}
& \text { HOURHFURMINLTEMINUTESEG"IOSECOND } \\
& \text { INITIALIZATICN DF VALLES }
\end{aligned}
$$

1,CHAR22,CHAR23,CHAR24,CHAR25
WRITEIKOT, 105OIIPUN, INOROT, JUSIN, ICONET,IAXIS,ITMARK,IMLINE,

$$
\begin{aligned}
& \text { ISTRLN } \\
& \text { IF(IPUN,NE.O) }
\end{aligned}
$$

ISTRLN

$$
\text { WRITEIKPCT, } 1
$$

1 WRITE(KPCT, 1050 IIPIJN, INDRUT, JUSIN, ICONET, IAXIS, ITMARK,IMLINE
2ISTRLN
IFIIAX

CONVERSION OF TRUE NCRTH DEGREES.MINUTES TO RADIANS
NDEGTN=DEGTN+E
$N M I N T=(D E G T N-N D E G T N+E)+100$.
NACDE= NM INT $/ 60$

 J？\because VIM $=1$

$$
\begin{aligned}
& \text { WPTT:(KRT, IERB)JMQiNUW } \\
& \text { ICTINA=0 }
\end{aligned}
$$

$\stackrel{8}{6}$
FPEM FUNL 36O CEGREES

NTNA＝IAPS（NIN）
$I C H E C K=0$
$I R=I A$,
$K I U N T=O$
$A I N A C=N I N A$
$O D E S O O I L U O F=I B, N I N$
$I A C I C H=O$
$I C H C C K=I C H E C K+1$
NTNA＝IAPS（NIN）
$I C H E C K=0$
$I R=I A$,
$K I U N T=0$
$A I N A C=N I N A$
$O D ~$
$I S O O I L U C F=I B, N I N$
$I A C I C H=O$
$I C H C C K=I C H E C K+1$
NINA＝IAPS（NIN）
$I C H E C K=0$
$I R=I A$,
$K I U N T=O$
$A I N A C=A I N A$
$O D E S O O I L U C F=I B, N I N$
$I A C I C H=O$
$I C H C C K=I C H E C K+I$
SECTCQ FCR TRANSIT ANELF ONF SECTIR FQQ TRANSIT ANCLE TWR TRANSIT ANGLE TWO
TIME IF SIGHTING HOURS TIME IF SICHTING MINLIES STCT•JR IS RLANK IF INFUTTING

IXTEMPITSIN(XTEMP

46

(ATIME = ITIME (JOBNUM, (EA(JOBNUM))-ITIME(JCENUM. I)
IF IATIME.EG.O)AVEL=C.OO

IF【LEN\{JCENUN) *GT. 11GCTO 550L

5501
$\begin{array}{ll} & \text { GOTO } 5503 \\ 5502 & \text { CALL AUTOD }\end{array}$

CALL TIMEPH(ILAP, IELT)

5503
5050

GOTO 5423

GOTO 5423
PREVIDUS BLOCK NEXT FCR BACKTRACKING BUGY5 ANO ALL MEASURES FOR
KESTARTING THE NEXT SENT

CIRCT=DEGREE(DIRCT)
ISTCRE $=2$
$\underset{A=3}{C A L L}$ TMEPH(ILAP,IELT)
ILUU
8
0
0

$\omega \circlearrowleft$

IF（LEN（JC3NUN）．GT．LIGCTO 5601

IF (NCUT.LT. O)CALL XCLIER
AJUTA=IABSINCLII

 COTO 3704

IFIGIMLIAE.EG.OI.ANU.(ItMARK.EG.O)IGOTO 9998							
istart must me less than ifia. therefcre if the rgurs are timed IL. Start at 230000 t 000100 tren time must be adjusted							
tire jf stakting hlurs							
time jF starting minties							
TIME JF Starting secinaos							

5315
*
4000

U

TIME JF FINISH MINUTES
TIME OF FINISH SECGNES
CT OF IIME HCURS
CT OF TINE MINUTES
CT LF TINE SECCNDS
REAU（KIN，LGOCINSHOUR，ASMIN，NSSEG，NFHOUR，NFMIN，NFSEC，IHDT，IMUT，ISCT

IF（IPINN．NE．O）WRITE（KFCT，1901）NOJCBS

3

都

$39 \forall d$

IT'

NBAK=MBAK +

GUTG 900 ,

$$
\begin{aligned}
& \text { E47 MBAK }=\text { MHAK+1 } \\
& \text { CALL RSORTIXINII,YINT, INCG) }
\end{aligned}
$$

SEGMENTEU TIMELINE CF ACT

\cup

WRITE(KOT, 95 C (INTIME(t), $\mathrm{L}=1,9$, TCHAR, (MTIME(L), $L=1,91, \mathrm{~J}$, MBAK

$$
\begin{array}{ll}
\mathrm{C} & \text { EOR INCA=INCC-4 } \\
\mathrm{C} & \\
\mathrm{C} & \text { TYPE OF CURVE SPLINE } \\
\mathrm{C} &
\end{array}
$$

$$
\text { DO } 801 \quad M=2,1 \mathrm{ACA}
$$

$$
\operatorname{XDK}(M)=X
$$

$$
\infty
$$

XOUT(M) $=$ COUT
802 CONTINUE

E66 EONCR=(XINU(INCC)-XIN(11)//(FLUATIINCOI+1.) $\quad \begin{aligned} & \text { EOTO }\end{aligned}$ CXNCR=(DXNCR*(FLOAT(INCO) +1.1$) / 160$.

666

APT $S=100$
 XOUT (1) $=X I N O(1)$ $C 0$ $802 M=2.95$

802 CONTINUE

IF INEETWEEN * x Jyd $d \forall$ \& \forall JNI7 V $\stackrel{\sim}{\bullet}$

WRITEIKP(T, 860$)(X O U T(L), L=1, J)$
E10 CONTINUE
800 CONTINUE

14
0
0
0
CIJNT INUE
co dimension scan iafity checks jn fron where the dimensions care axts

8 -
ง U

CINENSIUN A $(105,25), x(1), I L(1)$
$N M=M+1$
$L L=1$
$C ?+C \quad J=1, M M$
$I L(J)=0$
$I L(J)=0$
$I=1$
$\therefore \quad 3 \quad K=1+N M$
3
$m \quad \rightarrow$

AIJTOC SUBFJUTINE ***************************

XNOK $=$ NNDK

calling a test of its values CALL DUCKT
$\begin{array}{ll}298 & \text { IHELP=1 } \\ 299 & \text { RETURN }\end{array}$

591
HAS NDW

$$
\begin{aligned}
& \text { IREEN SUBSTITLED WITH IHE VALUE }, \text {,Flo.3///1 } \\
& \text { END }
\end{aligned}
$$

$$
\begin{array}{r}
\text { CUKT0037 } \\
\text { OUKT0038 }
\end{array}
$$

INTPOO37
INTPOO3日

SINGULAR.

 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

\qquad

CDEF
CUPP
SUBR
EIMEA
THIS
THIS INSTALIATICN REGIIRES LCGICAL UNIT G AS THE PRINTER

$$
K: I T=\epsilon
$$

NJUTA =IARS(NCUT)

CONTINUE LKITEIXDT,48CIJEBNUN
49 1
 fofnatcl"
formatilit, jutput filints fer jcb numbef 1,121

$$
\begin{aligned}
& \text { OUTROO37 } \\
& \text { OUTROO38 } \\
& \text { CUTROO39 } \\
& \text { UUTROO40 } \\
& \text { JUTROO41 } \\
& \text { GUTROO42 } \\
& \text { UUTR0043 } \\
& \text { DUTROO44 } \\
& \text { DUTROO45 } \\
& \text { OUTROO46 } \\
& \text { DUTROO47 } \\
& \text { CUTROO48 } \\
& \text { OUTROO49 } \\
& \text { OUTROO50 } \\
& \text { UUTROO51 } \\
& \text { OUTROO52 } \\
& \text { CUTROO53 } \\
& \text { QUTROO54 } \\
& \text { OUTFOO55 }
\end{aligned}
$$

$\stackrel{8}{7}$
gogingonis

EECISIMN OF WHERE CJANECIION PGINT GOES
IF(IIAIICH. CEII.AND.IIANS.NE IJIWRITE

 1)
WRITVEIKPCY

[^3]PRINTEU ENLY
IFI(IPUN.NE. I).OR. (INCROT.EQ. IIICALL TSOFT ($\mathrm{X}=\mathrm{LEN}(\mathrm{JCBNUM})+\operatorname{IACICH}$

IF(LEN(JCBNUH).EQ.1) t) $=$ (EN(JOBNUM)
WRITE(KGT,15C)LX, JORAMM
LENT $=1$ EN (JOBAUM) ENT=LEN(JOBNUM)
RITE(KOT,17E)
LF (IENT JCPNUM)
ifiliadich.eg.

IF (XMIN.GT.XIN(JOBNUN,I)IXMIN=XIN(JOBAUM,I)
IF (YNAX.LT.Y IN(JORAUN,I) IYMAX=YIA(JJBNUM, I)
IF (YMIN.GT. YIN(JOAMU,I)IYMIA=YIM(JCBNUN,I)
cont inve
:100

[^4]
否

NEGATIVE ANGLE FIX
\[

$$
\begin{aligned}
& \text { AEGATIVE ANGLE FIX } \\
& \text { IFYNANGLE GE OIGOTE ICO }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { IF (NANG } \\
& \text { ISUR }
\end{aligned}
$$

IF (MANGLE.NE.O)ISUB=-1
IFIMANGLENE.OIMATIGLE=GC + MANGLE

$$
\text { AANGLE=360 }+ \text { ISUB +NANGLE }
$$

MANGLE $=360$ + ISUB + NANGLE:

$$
\begin{aligned}
& \text { CEGREE=FLCAT(NANGLE) TFLCAT(MAVGLFJ/IOC } \\
& \text { RETURN } \\
& \text { END }
\end{aligned}
$$

$$
\stackrel{3}{9}
$$

EETLRN
ENC

SAMPLE OUTPUT
FOR DROGUE BODY COCRDINATE
AND VELOCITY CALCULATION
COMPUTER PROGRAM
解

AVERG．OIRETA
DESPMIN
11.00

l PESITITAN

LEHTIDE	TIVELPT
HM：MH：SS	HH：MM：SS
$-00: 1 Q: 00$	$C C: 00: 00$
$-00: 10: 20$	$C A: C 7: 40$
$-00: 05: 50$	$00: 04: 30$
$00: 00: 00$	$00: 05: 50$

Y EUSRD
METERS
365.0
368.2
370.2
376.4
－ISTIAG WF CCEFFICIEATS GE LFACT SOMAEES M＝TMMD

［＊ $2 \rightarrow$－
¢＊¢9\％
E「Tくつ
L＊00う－
Sd91－k
08312 x

N号 4

WEKAGES FUK GRCUP：
I มสัดกกN Gur とこう NI SIVITd \rightarrow $2 G * 5 E$

10 LUTHUT PEINTS FER JFQ AUMRIA

N

-18.210
306.722
LISTING ar GMEFSICIENTS USEO IN SUREJUTINE DUCK
45.429
-150.341
-20.722
-158.245

ξ

ImemAKK UWTFLT PU	$\text { TIME }=$	$04: 35: 00$ TIMENARKS	$\begin{aligned} & \text { TIME } \\ & \mathrm{N}^{\prime}: \pm \end{aligned}$	$\underset{6}{A F T E R}$	LCHTIDE= $00: 41: 00$
IBN X - ¢ 5	IEN YeuTS				
-26E.273	245.302				
- 2 A - 275	347.274				
- 20.275	$3 \% 1.058$				
-20t. 275	7.76 .734				
-280.275	364.302				

$L O W T I D E=00: 51: 00$

IEM Y7.1T

323.33
325.73
226.51
335.14
342.75

IUN XLUTS
-150.097
-196.077
-146.37
-154.037
-140.637

1404.840
327.482

0
0
UUTPU: PuINTS=
IHEMAFKS NT. \quad S

0.0
YMIN $=$

tetal numecr ec jrps sevals 2

$$
Y_{\text {max }}=378.395
$$

DROGUE BUOY PLOTTING COMPUTER PROGRAM LISTING

KI $\mathrm{N}=\mathrm{a}$
KT $\mathrm{N}=9$
$K F Y=1$
$K \subset Y I=6$

Datice 1

IUSNUT NO ESTI

q. An(k1:1,5)?)WAST! pranckiv, 5li)lxiar

8

$$
1: 71422
$$

rHART.

$$
\begin{aligned}
& a \\
& \underline{a}
\end{aligned}
$$

กM CONSOL

Plotiol 09

[^5]```
NOTE ;
\begin{tabular}{rr}
& \multicolumn{2}{c}{ Castin } \\
L. 44 & \(24^{\prime}\) \\
68 & \(48^{\prime}\) \\
\hline
\end{tabular}
H.W. -4 Min on Portland
L.W. -l Min on Portland
H.W. +0.7 FT
L.W. +0.0 FT
```

Ranges
MEAN 9.7 FT
SPRING 11.1 FT
MEAN TIDE LEVEI 4.8 FT
ALL HOURS EASTERN DAYLIGHT SAVINGS TIME

|  |  | TIDES |  |
| :---: | :---: | :---: | :---: |
|  |  | TIME | H? |
| Julv 4, 1972 |  | 0503 | 9.4 |
|  |  | 1115 | 0.1 |
|  |  | 1732 | 10.2 |
|  |  | 2356 | 0.1 |
| July |  | 0605 | 9.2 |
|  |  | 1212 | 0.3 |
|  |  | 1834 | 10.4 |
| July |  | 0103 | -0.1 |
|  |  | 0710 | 9.1 |
|  |  | 1314 | 0.4 |
|  |  | 1932 | 10.6 |
| July |  | 0210 | -0.4 |
|  |  | 0820 | 9.1 |
|  |  | 1417 | 0.4 |
|  |  | 2035 | 10.9 |
| July | 8 | 0312 | -0.7 |
|  |  | 0922 | 9.3 |
|  |  | 1518 | 0.2 |
|  |  | 2137 | 11.2 |
| July | 9 | 0413 | 1.0 |
|  |  | 1019 | 9.5 |
|  |  | 1616 | 0.1 |
|  |  | 2232 | 11.4 |

TIDES

|  | TIME | HT |
| :---: | :---: | :---: |
| July 10 | 0510 | -1.3 |
|  | 1116 | 9.0 |
|  | 1714 | -0.1 |
|  | 2328 | 10.8 |
| July 11 | 0601 | 1.4 |
|  | 1209 | 9.8 |
|  | 1808 | -0.2 |
| July 12 | 0019 | 11.4 |
|  | 0651 | -1.3 |
|  | 1258 | 9.9 |
|  | 1759 | -0.1 |
| July 13 | 0110 | 11.1 |
|  | 0738 | -1.1 |
|  | 1346 | 9.9 |
|  | 1950 | 0.0 |
| July 14 | 0159 | 10.7 |
|  | 0823 | -0.7 |
|  | 1434 | 9.8 |
|  | 2039 | 0.2 |
| July 15 | 0247 | 10.1 |
|  | 0910 | -0.2 |
|  | 1520 | 9.3 |
|  | 2130 | 0.5 |
| July 16 | 0335 | 9.5 |
|  | 0953 | 0.3 |
|  | 1606 | 9.4 |
|  | 2223 | 0.8 |
| July 17 | 0427 | 8.3 |
|  | 1041 | 0.8 |
|  | 1655 | 9.2 |
|  | 2315 | 1.0 |
| July 18 | 0520 | 8.4 |
|  | 1130 | 1.2 |
|  | 1746 | 9.1 |
| July 19 | 0013 | 1.2 |
|  | 0619 | 8.1 |
|  | 1221 | 1.6 |
|  | 1839 | 9.0 |

TIDES

|  | TIME | HT |
| :---: | :---: | :---: |
| July 20 | 0109 | 1.2 |
|  | 0718 | 7.9 |
|  | 1316 | 1.7 |
|  | 1935 | 9.0 |
| July 21 | 0210 | 1.1 |
|  | 0814 | 7.8 |
|  | 1411 | 1.8 |
|  | 2027 | 9.1 |
| July 22 | 0305 | 0.9 |
|  | 0909 | 8.0 |
|  | 1502 | 1.7 |
|  | 2118 | 9.3 |
| July 23 | 0354 | 0.7 |
|  | 0958 | 8.2 |
|  | 1550 | 1.5 |
|  | 2204 | 9.3 |
| July 24 | 0437 | 0.4 |
|  | 1041 | 8.4 |
|  | 1635 | 1.2 |
|  | 2245 | 9.9 |
| July 25 | 0517 | 0.1 |
|  | 1122 | 8.7 |
|  | 1716 | 0.9 |
|  | 2324 | 10.7 |
| July 26 | 0554 | -0.2 |
|  | 1158 | 9.0 |
|  | 1752 | 0.6 |
| July 27 | 0003 | 10.4 |
|  | 0630 | -0.4 |
|  | 1236 | 9.4 |
|  | 1835 | 0.3 |
| July 28 | 0041 | 10.5 |
|  | 0707 | -0.6 |
|  | 1313 | 9.7 |
|  | 1916 | 0.0 |

# CIRCESETAT COPY Sea Gran: pository 

## HOLBROOK COVE SURVEY

A 1972 Student Summer Ocean Engineering Laboratory Research Project

A fundamental educational experience for undergraduate students of Ocean Engineering is the opportunity to design, construct and operate equipment in the marine environment in a coordinated attack upon some real-world problem. This is the primary objective of the Holbrook Cove Survey. The research objective is to gain a better understanding of the hydraulics and ecology of this small cove and to determine what effect the effluent that a mining operation discharges into this relatively confined estuary may have upon its ecological community. This is one of the projects of the 1972 Summer Ocean Engineering Lakoratory.

A companion report, "The Search for DEFFNCE and Other Projects of Students During the 1972 Summer Ocean Engineering Laboratory," (MITSG 72-20), describes the other Ocean Engineering projects undertaken by the students.

Funding for the 1972 Summer Ocean Engineering Laboratory was provided by:

The National Sea Grant Program, Grant No. 2-35150
The Henry L. and Grace Doherty Charitable Foundation, Inc. The St. Anthony Foundation
The M.I.T. Undergraduate Research Opportunities Program
The M.I.T. Information Processing Board
The M.I.T. Freshman Advisory Council
The Maine Maritime Academy
The Massachusetts Institute of Technology

Alfred A. H. Keil
Director

December 1972

[^6]Miss Anita Harris permitted the use of her properties and facilities on Holbrook Island without which the Holbrook Cove Survey would have been impossible.

The list of faculty and staff at both the Maine Maritime Academy and the Massachusetts Institute of Technology who contributed to the success of the 1972 Summer Ocean Engineering Laboratory would be lengthy and nearly impossible to compile without inadvertent omissions, so to these individuals the participants express their sincere appreciation.

# 1972 Summer Ocean Engineering Laboratory 

PARTICIPANTS
Massachusetts Institute of Technology

Maine Maritime Academy

FACULTY:
Damon E. Cummings
David B. Wyman Donald A. Small
ACADEMIC STAFF:
Keatinge Keays
GRADUATE STUDENT STAFF:
Walter B. Lincoln Roger K. Wells
STUDENTS:
John S. Allen
Stephen E. Barnes
Peter W. Cebelius
Richard Chertow
Robert L. Dwyer
Glenn J. Keller
Michael B. Kennedy
Valery E. Lee
Robert J. Lukens
Edward Murphy
Gerald L. Roylance
John F. Schenck
Karen S. Seo
Alexander T. A. Siapkaras

Raymond Barriault Garry Bartlett George Benson William Blackwood David Bradford Douglas Cameron Bruce Campbell
Malcolm Cianchette Vincent Deviin Daniel Labreque Mark Libby Stephen Lobley Robert McCarty George Miller William Parker John Sautter Gregory Sawyer

## TABLE OF CONTENTS

Page
Administrative Statement ..... i
Ack now ledgments ..... ii
Participants ..... iv
1.0 Introduction ..... 1
2.0 Summary ..... 3
2.1 Objective
3
3
2.2 Background ..... 3
2.3 Results ..... 4
2.4 Conclusions ..... 5
2.5 Recommendations ..... 6
3.0 Determination of the Current Patterns in Holbrook Cove ..... 8
3.1 Objective ..... 8
3.2 Procedure ..... 8
3.3 Limitations of Accuracy
9
9
3.4 Data Reduction
10
10
3.5 Results
3.5 Results
12
12
3.6 Conclusions
14
14
3.7 Recommendations ..... 18
4.0 Determination of Current Velocities versus Real Time in the Southern and Northwestern Entrances of Holbrook Cove ..... 23
4.1 Objective ..... 23
4.2 Procedure
23
23
4.3 Results .....
23 .....
23
4.4 Conclusions
4.4 Conclusions
23
23
4.5 Recommendations ..... 28
5.0 Temperature, Salinity and Chlorophyll ..... 29
5.1 Temperature and Salinity Patterns ..... 29
5.1.1 Objective ..... 29
5.1.2 Background ..... 29
5.1.3 Results ..... 29
5.1.4 Conclusions ..... 34
5.1.5 Recommendations ..... 34
5.1.6 Detailed Procedure ..... 34

## TABLE OF CONTENTS (continued)

Page
5.2 Chlorophyll Patterns in Holbrook Cove ..... 36
5.2.1 Objective ..... 36
5.2.2 Background
37
37
5.2.3 Results ..... 37
5.2.4 Conclusions ..... 37
5.2.5 Recommendations .....
41 .....
41 ..... 41
5.2.6 Procedure
5.2.6 Procedure
6.0 Biological Effects of Heavy Pollutants ..... 43
6.1 Objective
6.2 Background ..... 43
6.3 Resulta ..... 43
6.4 Conclusions ..... 49
6.5 Recommendations ..... 51
6.6 Detailed Procedures ..... 51
516.6.1 Sampling Place
6.6.2 Sampling Technique
6.6.2 Sampling Technique
6.6.3 Sample Analysis ..... 51 ..... 51 ..... 52
7.0 Instrumentation ..... 52
55
7.1 Karman Vortex Trail Current Meter ..... 55
7.1.1 Objective
7.1.2 Background ..... 55
7.1.3 Results ..... 55
7.1.4 Conclusions ..... 55
7.1.5 Recommendations
56
56
7.1.6 Detailed Procedures
7.1.6 Detailed Procedures ..... 56 ..... 56
7.1.7 Fabrications
56
56
7.1.8 Calibrations
59
59
7.1.9 Meter Implacements ..... 61
7.2 Impeller-Driven Current Meter ..... 61
7.2.1 Objective ..... 63
7.2.2 Background ..... 63
7.2.4 Mooring ..... 63
7.2.5 Mooring
65
65
7.2.6 Renclusions ..... 65
7.3 Current Direction Indicator ..... 68
7.3.1 Objective ..... 68
7.3.2 Background .....
68 .....
68
7.3.3 Results
7.3.3 Results
68
68
7.3.4 Conclusions
7.3.4 Conclusions ..... 69
Page
7.4 Oxygen Meter ..... 71
7.4.1 Objective ..... 71
7.4.2 Background ..... 71
7.4.3 Results ..... 71
7.4.4 Conclusions ..... 72
7.4.5 Detailed Description of the Oxygen Meter and Probe ..... 72
7.5 Automated Data Recorder ..... 74
7.5.1 Objective ..... 74
7.5.2 Background ..... 75
7.5.3 Results ..... 75
7.5.4 Conclusions ..... 78
7.5.5 Recommendations ..... 78
7.6 Tide Gauge ..... 78
7.6.1 Objective ..... 78
7.6.2 Background ..... 78
7.6.3 Results ..... 79
7.6.4 Conclusions ..... 79
7.6.5 Recommendations ..... 79
7.7 Detailed Bottom Topography of Holbrook Cove ..... 82
7.7.1 Objective ..... 82
7.7.2 Background ..... 82
7.7.3 Results ..... 82
7.7.4 Conclusions ..... 82
7.7.5 Recondmendations ..... 85
7.8 Bottom Sample Corer ..... 85
7.8.1 Objective ..... 85
7.8.2 Background ..... 85
7.8.3 Results ..... 85
7.8.4 Conclusions ..... 85
7.8.5 Recommendations ..... 86
7.8.6 Detailed Procedure ..... 86
Appendix A Drogue Buoy Computer ProgramsAppendix B Tides at Castine, Maine
Appendix $C$ An Example of the Use of Figure 7.11

## LIST OF FIGURES

Page
3.1 Drogue Buoys ..... 8
3.2 Holbrook Cove ..... 13
3.3 Pre-High, High and Post-High Streamlines and Current Velocities ..... 16
3.4 Pre-Low, Low and Post-Low Streamlines and Current
Velocities ..... 17
4.1 Impeller Current Meter Results in Northwest Entry
to Holbrook Cove ...........4. 2 Karman Vortex Trail Current Meter Results in SouthEntry to Holbrook Cove25
4.3 Comparison of Buoy Velocities and Current Meter Results in Northwest Entry to Holbook Cove ..... 26
4.4 Comparison of Buoy Velocities and Current Meter Results in Southwest Entry to Holbrook Cove ..... 27
5.1 Sampling Bottles ..... 30
5.2 Sampling Grid ..... 35
5. Chiorophyll 'A' Contained in Water Samples Taken at Stations IA through 8A ..... 38
 ..... 39
5.5 Chlorophyll 'A' Contained in Water Samples Taken at Stations lC through 8C ..... 40
6.1 Callahan Mine Location ..... 44
6.2 Callahan Mine Complex ..... 45
7.1 Karman Vortex Trail Current Meter Results at Castine ..... 57
7.2 Karman Vortex Trail Current Meter Layout ..... 60
7.3 Karman Vortex Trail Current Meter Calibration Curve ..... 62
7.4 Impeller Current Meter (1971 Version) ..... 64
7.5 Impeller Current Meter Mooring ..... 66
7.6 Impeller Current Meter Harness ..... 67
LIST OF FIGURES (continued)
Page
7.7 Oxygen Meter Circuit Diagram ..... 73
7.8 Astable Multivibrator Circuit Diagram ..... 77
7.9 Tide Gauge Construction ..... 81
7.10 Tide Gauge Critical Conditions ..... 83
7.11 Nomogram ..... 84
7.12 Corer Body ..... 87
7.13 Corer Tripping Mechanism ..... 88
7.14 Corer Head and Nipple Insert ..... 89
Page
3.1 Comparison of Length of Baselines as Determined by Triangulation and Measurement (CGS Charts) ..... 10
3.2 Names and Approximate Time Boundaries of Tidal Phases ..... 14
3.3 Tide Phase: Pre-High ..... 15
3.4 Tide Phase: High ..... 18
3.5 Tide Phase: Post-High ..... 19
3.6 Tide Phase: Pre-Low ..... 20
3.7 Tide Phase: Low Tide ..... 21
3.8 Tide Phase: Post-Low ..... 22
5.1 Temperature, Salinity, Density and Chlorophyll 'A' at Depth $=0$ Meters ..... 31
5.2 Temperature, Salinity, Density and Chlorophyll 'A' at Depth $=3$ Meters ..... 32
5.3 Temperature, Salinity, Density and Chlorophyll 'A' at Depth $=6$ Meters ..... 33

### 1.0 INTRODUCTION

This report is the first of two volumes concerning the accomplishments of the $1972 \mathrm{M} . I . \mathrm{T} . /$ Maine Maritime Academy Sea Grant Summer Ocean Engineering Laboratory. It describes the investigations students conducted in an oceanographic and biological survey of Holbrook Cove in July 1972. The second report deals with their successful search for the remains of a Revolutionary War privateer, the design and construction of equipment for use in future Sumer Ocean Engineering Laboratories, and other activities.

The Summer Ocean Engineering Laboratory provides undergraduate ocean engineering students an opportunity to combine theory and practice when they design simple equipment and test and operate this equipment in the real environment for which the students must prepare themselves.

We selected two major projects in which all the students' equipment could be utilized in coordinated efforts; thus each student had an opportunity to contribute useful results to a real-world ocean engineering project. These two major projects are a comprehensive survey of Holbrook Cove and a systematic search for the remains of American Revolutionary War ship hulks.

For the students, the Summer Laboratory demonstrated that there is more to ocean engineering than just conceptual design and theoretical analysis. They dealt first-hand with Murphy's Law. They experienced the rigors of the marine environment, including the limitations of weather, the swift devastation of corrosion, and the exacting demands of hydrostatics.

Their benefits, judging from the students' post-Summer Lab interests and activities, include: a better perspective of their academic experiences; an enhanced appreciation for the relevance of the various elements that comprise an ocean engineering curriculum; an intensified curiosity directed toward unfamiliar facets of ocean engineering; and, in some cases, an inspiration for a special project or thesis.

In the report of the 1971 Summer Ocean Engineering Laboratory we stated:

The opinion of all who were involved with this project, students and faculty of both M.I.T. and Maine Maritime Academy, visiting faculty, and consultants, was that this program served an educational purpose that is essential early in the students' ocean Engineering education. All hands were exposed to the myriad of problems encountered in attempting to apply theory and classroom experience to equipment and procedures that must work at sea without the enomous expense and pressure of full-scale industrial or government projects. The usual mistakes were made in an environment where they could be dealt with without cost or loss of essential data and the lessons were learned.
Our experience during this second Sumer Ocean Engineering Laboratory reinforces our faith in the value of this educationa: experience.

### 2.0 SUMMARY

2.1 Objective

The objective of the Holbrook Cove Survey is to gain an understanding of its hydraulics and ecology in order to ascertain the effect which the effluent from the Callahan mine outfall has upon the Cove.

Holbrook Cove is located approximately one-half mile southwest of Castine, Maine, and appears on U.S. Coast \& Geodetic Survey Chart number 311 , as well as the Department of Interior/ Department of the Army topographical map of Castine, Maine. 2.2 Background

This project permitted the M.I.T. and Maine Maritime Academy students to design, construct and utilize individual equipment and employ them in the marine environment in a coordinated attack upon a real problem. It had come to the attention of those participating in the 1972 Summer Ocean Engineering Laboratory that heavy metal pollution is a problem in the coastal areas of Maine and that a relatively new mining operation had opened in Holbrook Cove. It is deemed possible that the effluent from the outfall of this mining operation has a profound effect upon the ecology. The following research projects were planned and coordinated to study this problem.

PROJECT

## Tidal Current Streamlines and Velocity

Temperature and Salinity Chlorophyll 'A' Content

Benthic Infauna Distribution
Tidal Height Fluctuations
Detailed Bottom Topography
Bottom Soil Structure
Water Oxygen Content

## STUDENT PARTICIPANTS

Cebelius, Kennedy and Lukens

Murphy
Chertow
Dwyer, Lee, Seo

Barnes
Cameron, Cianchette and Sautter
Barriault

Murphy

### 2.3 Results

The results of the individual projects are as follows:

Project Results

Tidal Currents

Temperature and Salinity

Chlorophyll 'A' content

Streamlines at various tidal phases have been established. Current velocities have been calculated. Current velocities have been measured on a realtime basis at the northwestern and southern entrances to the Cove. Fluctuations indicate a seiche in the Cove has a profound effect upon the velocity at any given time.

These measurements were made. The results are contained in trables 5.1, 5.2 and 5.3.

These measurements were made. The results are contained in Figures 5.3, 5.4 and 5.5 and Tables 5.1, 5.2 and 5.3.

Benthic Infauna Distribution
Still being analyzed. Initial trends indicate that the biomass and numbers of individuals are at a minimum at the sampling station nearest the outfall. This may indicate that the effluent has an adverse effect on the biota.

Tidal Height Fluctuations

Detailed Bottom Topography

A tide gauge has been built and tested, but the scribe mechanism and the magnitude of frictional forces did not permit the gauge to give useful results.

A nomogram was prepared to permit the soundings to be related to the MLLW datum. In testing the nomogram against observed tidal heights at Castine, it was noted that the scope of tide appears to be about one foot greater than indicated in the tide tables. Time precluded the detailed sounding program execution.

| Project | Results |
| :---: | :---: |
| Bottom Soil Structure | A corer and release mechanism were designed and built. During the first in situ test the messenger line used for retrieval was severed and the unit could not be relocated for recovery. |
| Oxygen Content of Cove Water | An oxygen meter was designed and constructed for use with an oxygen probe borrowed from the Woods Hole Oceanographic Institution. Time precluded calibration. No measurements of oxygen content of Cove water were made. |

### 2.4 Conclusions

It is apparent that the educational objectives of this project were met. All of the rigors of the marine environment were apparent from the restrictions of weather to the effects of corrosion. The constraints of time demonstrated that careful planning is necessary if this priceless commodity is to be conserved and that, if it is not conserved, the entire effort up to the deadline may end in frustration. The loss of the corer dramatically demonstrated the need for failure analysis and provision of safeguards to handle those failures which may occur if an entire project is not to be jeopardized by some malfunction. Finally, the students received practical training in boat handling, safety at sea, navigation and the discipline these activities imply.

The research objectives were partially net. The results of the investigations into the hydraulics of the Cove indicate that there may be a seiche that significantly affects the current velocity magnitudes. Sampling of data at thirty-minute intervals does not give a meaningful result in this instance since the sampling intervals must be less than half the period of the seiche to obtain a meaningful real-time result. The gross flow patterns in the Cove have been defined particularly in the vicinity of the three entrances. Finally, the results suggest that the variation of current velocity with respect to depth is significant and should be investigated.

The results of the temperature and salinity survey reveal no anomalies in the absence of flow from the mine outfall.

The chlorophyll ' $A$ ' measurements do not suggest any effect upon chlorophyll 'A' distributions in the vicinity of mine outfall. In the absence of a constant effluent flow, none would be expected.

The preliminary results in the study of the benthic infauna distribution suggest that there is a detectable adverse effect upon the ecology in the vicinity of the mine outfall.

### 2.5 Recommendations

The Holbrook Cove Survey is incomplete as of this writing. From the research point of view, there is still a great deal to be learned in this relatively small geographical area. A better and more complete survey could and should be conducted, taking advantage of the lessons and mistakes of the 1972 effort. Certainly, the equipment not used in the 1972 survey should be employed to complete those research objectives not carried out in this effort because of the limitations of time.

A determination of the period and magnitude of the seiche in Holbrook Cove and its effect upon the flow patterns is a very intriguing project and the most effective means appears to be through the use of current meters. A second study which suggests itself is the determination of the variation of current with respect to depth. Both of these projects would be enhanced by the design and construction of a device that will establish current direction for use with the current magnitudes as measured by the current meters.

If the Callahan mine outfall is discharging effluent, a ref tition of the study of the chlorophyll 'A' distribution seems indicated. Perfection of a method to measure the concentration of heavy metal ions to correlate with the clorophyll 'A' pattern is highly desirable.

From the educational viewpoint, the efforts in surveying the Cove are ideal. The project is of necessity interdisciplinary and careful coordination is required if the results are to be meaningful. This coordination imposes the discipline of
scheduling, which is one of the very real constraints not adequately imposed by any other form of educational experience. It is therefore recommended that the survey effort be considered for future Summer Ocean Engineering Laboratory projects.
3.0 DETERMINATION OF THE CURRENT PATTERNS IN HOLBROOK COVE
3.1 Objective

This Froject has as its objective the determination of the current velocities anc streamlines in the Holbrook Cove estuary as a function of time anc tide. Data were obtained by the use of drogue Euoys (see Figure 3.1). By recording the geographical position of each bloy and the associated time, velocities and positions have been calculated.


Figure 3.1
Drogue Buoys

### 3.2 Procecure

Neasirement of buoy positions and the related times were made at various locations in the cove over the complete spectru ct tise states. Although it was originally planned to cover tie entire area of the Cove, limitations of time forced the proj ect to select those areas which appeared to be most crucial to the anderstarding of the cove's current patterns, and concentrate the data-cathering efforts only in those areas.

Georraplical measurements of buoy positions were made by -Gtatiistina a baseline between two transits and recording both i-s length ara lintz of bearing. Using the transits at the ends
of the baseline, simultaneous measurements of the relative angle between the baseline and the line of sight from each transit to a buoy were made and recorded. The units of measure employed were:

Directions and angles--degrees and minutes
Baseline length--meters
Time-hours, minutes and seconds
3.3 Limitations of Accuracy

Factors affecting data accuracy were both natural and mechanical. The natural factor that was of concern was the effect of the wind upon the paths and velocities of the buoys. Wind velocities in excess of two knots were considered to measurably affect data accuracy, and wind velocities in excess of five knots were considered unacceptable. In reducing the data, all measurements taken in conditions involving wind velocities in excess of two knots were discarded. In reducing the data, it appears that there may be some measurable wind effect at velocities of one to two knots. This fact led the team to concentrate the datagathering effort into the very early morning hours in which there is generally no measurable wind.

Mechanical factors affecting the accuracy of the data were the limitations equipment imposed upon the measurements of the baseline lengths, line-of-sight angles with respect to the baseline and the times of each measurement. The end positions of the baselines were established by locating them on a chart of the estuary with respect to landmarks depicted thereon. Lengths of the baselines were determined by first calculating the length by means of triangulation and then measuring the distance between the two end positions as located on the Coast and Geodetic Survey Charts. Table 3.1 contains a comparison of the length of the baselines as determined by triangulation and by measurement from the Coast and Geodetic Survey Charts.

It is estimated that the line-of-sight angles with respect to baseline were measured with limits of accuracy of about tone-half degree of arc. Time was measured to the nearest tenth of a minute (six seconds).

Table 3.1
COMPARISON OF L.ENGTH OF BASELINES AS DETERMINED BY TRIANGULATION AND MEASUREMENT (CGS CHARTS)

|  | LENGTH |  |
| :--- | :---: | :---: |
|  | MEASURED <br> FROM <br> CHART | MEASURED <br> BY |
| RASELTNE | 823 | 950 |
| $015 / 195$ | 311 | 321 |
| $026 / 206$ | 347 | 368 |
| $108 / 288$ | 293 | 246 |
| $122 / 302$ | 329 | 333 |
| $146 / 326$ | 466 | 397 |
| $174 / 354$ |  |  |

### 3.4 Data Reduction

The large volume of data collected made the use of a computer highly desirable. The quality of the data was carefully examined and several series of observations were disregarded because they appeared to have been severely affected by wind. The remainder of the data was then sorted first by utilizing a computer program to calculate buoy velocities and then discarding all inconsistent observations. For example, if a buoy's velocity changed drastically between observations and then appeared to return on succeeding observations to values consistent with earlier observations and the buoy's position was inconsistent with those established by preceding and succeeding observations, the data corresponding to the nonconforming observation was discarded. This procedure was adopted after it was noted that the paths of the buoys were linear or involved only slight degrees of curvature, except for a very few instances in which buoys came under the influence of a vortex. In those instances, only the most erratic cases were disregarded.

The data reduction required solutions of two equations of the form:

$$
\begin{aligned}
& P_{n}=f(x, y) \\
& V_{n}=g\left(P_{n}, P_{(n-1)}, \Delta T\right)
\end{aligned}
$$

where
$P_{n}$ and $P_{(n-1)}$ are buoy positions at times $n$ and
$(n-1)$ respectively;
$f$ and $g$ are functions involving the parameters contained within the parentheses which follow them;
$x$ and $y$ are orthogonal coordinates in a twodimensional grid system with the $x$ coordinate measured parallel to the observation baseline:
$\Delta T$ is the time interval between the observations establishing the positions $P_{n}$ and $P_{(n-1)}$.

In order to define the positions of the buoys in terms of the coordinate system, $x$ and $y$, using the baseline as the base of a triangle and the lines of sight from the ends of the baseline to the buoy as its other two legs, the computer was utilized. The known quantities are the length of the baseline and the two included angles between the lines of sight and the baseline. Establishing one end of the baseline as the origin of the coordinate system, the calculation of the orthogonal projection of the leg formed by the line of sight from that end of the baseline to the buoy defines the $x$ coordinate. The calculation of the altitude of the vertex, formed by the intersection of the two lines of sight, with respect to the baseline defines the $y$ coordinate. The computer was programmed to calculate the $x$ and $y$ coordinates using the law of sines. No attempt was made to utilize a single coordinate system for the entire estuary, but rather a different one was used for each baseline. If desired, a set of transformation equations could have been derived, but it would have unnecessarily complicated the problem. streamlines were represented graphically on a chart of the cove. As a matter of expediency two Fortran IV programs were written. The first calculated the $x$ and $y$ coordinates and the velocities punching the calculated data onto cards which served as data
for the second program. The latter program plotted the streamlines on a mechanical plotter. These streamlines were then positioned on a chart of the cove and a reproduction made from the result.

A listing of each of the two programs is found in Appendix A. A description of the first program is also included in the appendix, but, since the second program merely reads Cartesian coordinates and calls an IBM-supplied plotting subroutine, no description seems to be required.

### 3.5 Results

Figure 3.2 is a reproduction of the chart of Holbrook Cove showing its major physical features and the surrounding landmarks. The features which appear to have the greatest effect upon the flow patterns of the Cove are three entrances: the sandbar (northern entrance), the Nautilus Rock Channel (northwestern entrance) and the Goose Falls Channel (southern entrance) The gandbar is submerged from zero to eight feet, varying from three hours before high tide to three hours after high tide. Since the drogue buoys used in this project required at least five feet of water depth, little data was obtained in the vicinity of the sandbar. It should be noted that all times in the ftgures which follow are recorded in hours and minutes from the High or Low tide. The times of High and Low tide were calculated based upon the U.S. Department of Commerce Tide Tables using the correction factors for Castine, Maine (see Appendix B)

The data have been grouped into six time periods, each corresponding to approximately a two-hour phase in the Tidal cycle. The names and approximate time limits of each phase are contained in Table 3.2.

Figures 3.3 and 3.4 contain the streamlines and flow velocities. Tables 3.3 through 3.8 list the dates of the observations, initial and final observation times (recorded with respec to the hours and minutes before or after the high/low tide) and the baseline from which the observations were made. The baselines are identified in figure 3.2 .


Figure 3.2
Holbrook Cove

Table 3.2
NAME AND APPROXIMATE TIME BOUNDARIES OF TIDAL PHASES

| NAME | BEGINNING | END |
| :---: | :---: | :---: |
| Pre-High Phase | 3 hours before high tide | 1 hour before high tide |
| High Phase | 1 hour before high tide | 1 hour after high tide |
| Post-High Phase | 1 hour after high tide | 3 hours after high tide |
| Pre-Low Phase | 3 hours before low tide | 1 hour before low tide |
| Low Phase | 1 hour before low tide | 1 hour after low tide |
| Post-Low Phase | 1 hour after low tide | 3 hours after low tide |

### 3.6 Conclusions

The streamline and velocity charts for the pre-high phase (Figures 3.3 and 3.4) reveal that buoy direction reversals begin with those buoys located closest to the southern entrance. The tidal flows appear to initiate approximately 45 minutes earlier at the southern end than at the northern end of the Cove. There appears to be a tidal phase gradient in the area of the cove bounded by the southern entrance and by Ram Island. The streamline chart (Figure 3.3) for the pre-low phase indicates slack water about one hour before the predicted low tide at Castine, Maine. The velocity chart (Figure 3.4) for the low phase indicates rather high velocities at the times of predicted slack water at Castine, Maine. It is noted that buoy velocities appear to decrease as they approach Ram Island.

The basin north of Ram Island can be pictured as a large tank with four inlets/outlets (one of which is open for about three hours before and after high tide). The currents through the northwestern and southern entrances to the Cove in post-low and pre-high phases are in opposition in the shallow channel west of Ram Island. The current from the southern entrance is predominant and forces water back toward the northwestern entrance.

As the current in the southern entrance begins to shift from flood to ebb, water continues to fill the basin. By the time the current at the northern entrance (the sandbar) begins

Table 3.3
TIDE PHASE: PRE-HIGH

| DATE | BUOY | $\begin{aligned} & \text { TIME } \\ & \text { START } \end{aligned}$ | $\begin{aligned} & \text { TIME } \\ & \text { END } \\ & \hline \end{aligned}$ | OBSERVATION <br> BASELINE |
| :---: | :---: | :---: | :---: | :---: |
| 7/25 | F3R | -3:00 | -2:29 | 026/206 |
| 7/25 | F4R | -2:10 | -1:07 | 026/206 |
| 7/25 | F30 | -3:56 | +0:36 | 026/206 |
| 7/19 | K3B | -5:05 | -3:36 | 108/288 |
| 7/19 | K2RB | -5:00 | -3:04 | 108/288 |
| 7/19 | K3RB | -2:41 | -1:48 | 108/288 |
| 7/19 | K3R | -2:43 | -1:55 | 108/288 |
| 7/19 | K3w | -2:42 | -1:48 | 108/288 |
| 7/19 | K3WG | -2:39 | -1:50 | 108/288 |
| 7/25 | E3W | -1:53 | +0:08 | 146/326 |
| 7/26 | C2R | -2:22 | -1:54 | 108/288 |
| 7/26 | C3W | -3:03 | -2:25 | 108/288 |
| 7/26 | C2B | -4:10 | -2:55 | 108/288 |
| 7/26 | C3B | -2:30 | -2:20 | 108/288 |
| 7/26 | D20 | -2:08 | -1:21 | 174/354 |
| 7/26 | D2R | -3:19 | -2:58 | 174/354 |
| 7/25 | E3Y | -2:40 | -2:12 | 146/326 |
| 7/25 | E4Y | -1:54 | -0:50 | 146/326 |
| 7/25 | E3RB | -2:35 | -2:09 | 146/326 |
| 7/25 | E2W | -2:41 | -2:14 | 146/326 |
| 7/25 | F3B | -3:35 | -3:00 | 026/206 |


1.7cta 7 F



Table 3.4
TIDE PHASE: HIGH

| DATE | BUOY | $\begin{aligned} & \text { TIME } \\ & \text { START } \end{aligned}$ | TIME <br> END | OBSERVATION BASELINE |
| :---: | :---: | :---: | :---: | :---: |
| 7/26 | DIY | -2:06 | +2:03 | 174/354 |
| 7/26 | D30 | -0:59 | +1:57 | 174/354 |
| 7/26 | D2RB | -1:00 | +0:41 | 174/354 |
| 7/26 | C3R | -1:31 | +1:40 | 108/288 |
| 7/26 | C4B | $-1: 56$ | +1:50 | 108/288 |
| 7/24 | Glo | -0:04 | +1:45 | 015/195 |
| 7/24 | GlR | -0:06 | +1:42 | 015/195 |
| 7/25 | F5B | -1:03 | +0:35 | 026/206 |
| 7/25 | F5R | -0:59 | +0:37 | 026/206 |
| 7/24 | GlB | -0:04 | +1:38 | 015/195 |
| 7/24 | H1W | -0:42 | +0:22 | 146/326 |
| 7/24 | H1PB | -0:45 | +0:25 | 146/326 |
| 7/11 | LIR | -1:03 | +0:25 | 122/302 |
| 7/11 | LIW | -1:04 | +0:27 | 122/302 |
| 7/11 | LIWG | -1:06 | +0:30 | 122/302 |
| 7/11 | L1RB | -1:05 | +0:31 | 122/302 |

to ebb, the basin has begun to empty. The current through the northern entrance (the sandbar) begins to flow into the basin and the currents through the outlets formed by the northwestern entrance and the channels east and west of Ram Island flow out of the basin. When the water level falls below the sandbar in the northern entrance, blocking flow, the currents through the remaining three outlets continue to flow out of the basin until the next current reversal at low tide. 3.7 Recommendations

The use of buoys and transits is subject to many limitations. First and foremost is the restriction on their use to periods of

Table 3.5
TIDE PHASE: POST HIGH

| DATE | BUOY | TIME | TIME | OBSERVATION <br> BASEINE |
| :--- | :--- | :--- | :--- | :--- |
| $7 / 23$ | ILRB | $+0: 51$ | END | $+2: 32$ |

Table 3.6
TIDE PHASE: PRE-LOW

| DATE | BUOY | TIME <br> $7 / 22$ | J2Y | TIME <br> END |
| :--- | :--- | :--- | :--- | :--- |
| $7 / 22$ | J2R | $-2: 27$ | OBSERVATION <br> BASELINE |  |
| $7 / 22$ | J2B | $-2: 30$ | $-0: 15$ | $108 / 288$ |
| $7 / 22$ | J2RB | $-2: 32$ | $-0: 52$ | $108 / 288$ |
| $7 / 24$ | H3Y | $-2: 33$ | $-0: 27$ | $108 / 288$ |
| $7 / 24$ | H3W | $-2: 09$ | $-0: 42$ | $108 / 288$ |
| $7 / 23$ | I2Y | $-2: 14$ | $-1: 25$ | $146 / 326$ |
| $7 / 23$ | I20 | $-1: 43$ | $-1: 23$ | $1.46 / 326$ |
| $7 / 19$ | K1WG | $-1: 41$ | $-1: 22$ | $015 / 195$ |

little or no wind. This severely limits the time available for gathering data. In addition, the buoys proved to be difficult to place in position, transport and store.

The transits require rather large crews since two transits are required per baseline and two or three men are needed at each station to communicate, man the transit, and record data.

The communications and recording duties can often be combined but, since at one of the transit stations a person must coordinate the sighting by the two stations, it is difficult to operate with less than four persons manning the two transits, while five persons appear to be optimum. There is also the added problem that, since buoys often run aground and in order to understand the currents, buoys must be frequently repositioned, an additional person is required to man a boat. Fatigue will also begin to take its toll, if a station is to be run over four or five hours and a replacement crew will be required. In short, buoy and transit stations require too many people to be an optimum solution.

Table 3.7
TIDE PHASE: LOW TIDE

| DATE | BUOY | TIME START | TIME <br> END | OBSERVATI <br> BASELINE |
| :---: | :---: | :---: | :---: | :---: |
| 7/27 | Alo | -3:03 | +1:30 | 026/306 |
| 7/27 | Aly | +0:09 | +1:29 | 026/306 |
| 7/26 | ClB | -0:18 | 0:00 | 108/288 |
| 7/27 | B3W | +0:33 | +1:21 | 108/288 |
| 7/22 | J3RB | +0:03 | +1:08 | 108/288 |
| 7/22 | J20 | +0:05 | +1:07 | 108/288 |
| 7/22 | J3R | -0:01 | +0:47 | 108/288 |
| 7/22 | J3B | +0:02 | +1:08 | 108/288 |
| 7/22 | J3Y | $0: 00$ | +1:15 | 108/288 |
| 7/22 | J3W | -0:02 | +0:38 | 108/288 |
| 7/19 | K1w | -1:16 | -0:02 | 108/288 |
| 7/19 | K1RB | -1:17 | +0:04 | 108/288 |
| 7/19 | K1R | -1:18 | +0:03 | 108/288 |
| 7/25 | F1R | +0:14 | +0:59 | 026/206 |
| 7/25 | F1B | +0:12 | +1:02 | 026/206 |
| 7/26 | ClR | -0:22 | +1:52 | 108/288 |
| 7/26 | C1W | +0:06 | +1:37 | 108/288 |

Before buoys are employed in future projects, they should be redesigned to permit operation under unfavorable wind condi tions. The visible part of the buoy should be made more easily identifiable and less dependent on lighting conditions, so increased distance and bad weather will not hamper tracking. The operational maximum was six buoys with a sighting period of approximately six minutes. The optimum was four buoys with a three-minute tracking period. Acoustical tracking by means of sonar might be an alternative.

The use of stationary current meters would eliminate many of the problems of buoy tracking, but would raise new ones. As

Table 3.8
TIDE PHASE: POST-LOW

| - DATE | BUOY | $\begin{aligned} & \text { TIME } \\ & \text { START } \end{aligned}$ | $\begin{aligned} & \text { TIME } \\ & \text { END } \\ & \hline \end{aligned}$ | OBSERVATION BASELINE |
| :---: | :---: | :---: | :---: | :---: |
| 7/26 | D1 RB | +0:14 | +3:05 | 174/354 |
| 7/26 | D10 | +0:15 | +3:00 | 174/354 |
| 7/26 | K2W | +1:13 | +3:12 | 108/288 |
| 7/26 | K2R | +1:15 | +3:15 | 108/288 |
| 7/26 | K2WGS | +2:01 | +2:28 | 108/288 |
| 7/25 | F20 | +1:09 | +1:55 | 026/206 |
| 7/25 | F2R | +1:18 | +3:14 | 026/206 |
| 7/25 | F2B | +1:16 | +2:19 | 026/206 |
| 7/25 | ElW | +1:10 | +2:43 | 146/326 |
| 7/25 | E2RB | +2:22 | +2:47 | 146/326 |
| 7/25 | E2Y | +2:02 | +2:45 | 146/326 |
| 7/26 | ClO | -0:19 | +2:43 | 108/288 |
| 7/26 | C2W | +1:53 | +2:44 | 108/288 |
| 7/25 | E1Y | $+1: 13$ | +1:44 | 146/326 |

it stands now, most current meters provide a current magnitude, but a current direction would also have to be obtained. Another limitation of current meters is the fact that they are difficult to moor and reposition.

An optimum approach might be the use of a combination of buoys and current meters. The buoys, of course, utilize a Lagrangian type of coordinate system, while the current meters use a Eulerian type of system, but with the information from both, an exceptional picture of the hydrodynamics of the Cove could be obtained.

### 4.0 DETERMINATION OF CURRENT VELOCITIES VERSUS REAL TIME IN <br> THE SOUTHERN AND NORTHWESTERN ENTRANCES OF HOLBROOK COVE

### 4.1 Objective

The objective of this project is to measure current velocities in the center of the channel at the southern and northwestern entrances of Holbrook Cove over a complete tidal cycle. 4.2 Procedure

The current meters were moored in approximately the center of the southern and northwestern channels at a depth of approximately 10 feet at low tide. A clock-timing device was used to record the current meter pulses on magnetic tape for a period of four minutes at half-hour intervals, on the hour and halfhour. The magnetic recorders were later retrieved. An operator rewound the tape, placed the tape recorder in the "play" mode and counted the number of pulses over a 10 -second interval. Current velocities were then detemined using the pulses per second to enter the calibration curves.

### 4.3 Results

Figures 4.1 and 4.2 are plots of current velocities at 30 minute intervals. The tidal phase noted at the bottom of the figures relate the time to the tidal phase at castine. Figures 4.3 and 4.4 compare buoy velocities calculated from observations taken in the vicinity of the current meter positions with the results of the current meters. It should be noted that the buoy observations were not made on the same day that the current meters were implanted and that the buoy positions are in the same general area, but not identical to the positions of the current meter. It should also be noted that the current meters were placed a fixed distance from the botton of the cove and their depths therefore vary with the height of the tides. It is estimated that the depth of the current meters varied from approximately 10 feet to approximately 20 feet over the complete tidal cycle.

### 4.4 Conclusions

In comparing the results of the current meters and the buoys, it appears that there may be a periodic velocity fluctuation that significantly affects the magnitudes of the currents



Figure 4.2
Karman Vortex Trail Current Meter Results in South Entry to Holbrook Cove


Figure 4.3
Comparison of Buoy Velocities and Current Meter Results Northwestern Entrance to Holbrook Cove


Figure 4.4
Comparison of Current Meter and Body Velocity Results in South Entry to Holbrook Cove
in the Cove. The results suggest that the period of this oscillation is about 8 to 12 minutes and the velocity variations may be as much as plus or minus 30 percent around some mean value.

Based upon the results of both the current meters and the buoy velocities, it is concluded that the tidal currents in Holbrook Cove are significantly affected by a seiche. In planning the project, this result was not anticipated and the time intervals selected for recording currents was arbitrarily set at 30 minutes. In addition, it appears that there is a significant reduction in the current velocities recorded by the current meter when the depths are greatest, i.e., near high tide.

### 4.5 Recommendations

While it appears that the current meter and recording system functioned properly, the reduction of data by counting the number of "beeps" over a time interval as a means of establishing velocity is far too time-consuming. It is therefore recommended that a means of recording velocity that will permit a more automated reduction of data be devised.

It is also recomenced that any future projects consider the possibilities of a seiche and velocity measurements be made continuously over longer time spans or, if intermittent current velocity measurements are made, the interval between measurements be shortened to a period that is less than half the period of the estimated seiche.

Finally, it is recommended that a vertical array of current meters be deployed to establish the velocity profile as a function of depth.

### 5.0 TEMPERATURE, SALINITY AND CHLOROPHYLL

### 5.1 Temperature and Salinity Patterns

### 5.1.1 Objective

The purpose in studying temperature and salinity in Holbrook Cove is to obtain baseline data usable in density an sis. This data will be useful in establishing the prevailing conditions in Holbrook Cove, and how these conditions may affe biology and water movement. The design of inexpensive water sampling bottles and their construction was reguired to achiep the primary objective (see Figure 5.1).

### 5.1.2 Background

Salinity and temperature analysis is a standard practio in physical oceanography. Salinity gives a good idea of the horizontal and vertical extent of dilution in the Holbrook mic estuary. Presumably, fresh water from both the Bagaduce and Penobscot Rivers dilute sea water in the area of the Cove. Ra water also has a day-to-day effect, although sampling was not extensive enough to draw any conclusions about this effect.

Temperature is of equal value to the oceanographer. With. any geographical basin, one generally finds more than one wate: type. Temperature tends to be the prime indication of a trans: tion from one water type to another; and the word thermocline denotes just such a boundary. Temperature is seasonal, and has a controlling effect on the biological community.

Finally, temperature and salinity, coupled with the depth at which the sample was taken, can be combined to calculate the density of the water sample. Density, also a characteristic o. the particular water, determines the physics of that water bod to some extent. Statically, more dense water will lie at the bottom of basins. Dynamically, the forces on waters of differ. ent density are the cause of water movement. 5.1.3 Results

The results of this investigation ar



Figure 5.1
Sampling Bottles

TABLE 5．1
TEMPERATJPE，SALINETY，DENSITY AND CHLQROPHYLL＇A＇ AT DOFTH＝C METERS

| STATICN | TEMPERATURE IDEGREES <br> CENTIGRADE） | SALINITY | SICMA＇1＇ | $\begin{gathered} \text { CHLORGPIYLL } \\ \text { (NICROGRAMS } \\ \text { PFR LITES) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 A | 17.5 | 26.19 | 15.22 | ？． 071 |
| 18 | 17.5 | 25.44 | 13.1 ？ | 1． 5.36 |
| 16 | 17．5 | 25.30 | 16.02 | 1．417 |
| 2 A | 17.0 | 25．6t | 16.40 | 1.417 |
| 2 B | 15.0 | 25.22 | $13.4 \%$ | 1．417 |
| 2 C | 17.0 | 24.34 | 17．7s | 1．7．4＇4 |
| 3 A | 17．0 | 25．3J | 19.13 | 1．＇+17 |
| 3 B | 17.0 | 25.39 | 10．1？ | 1.290 |
| 36 | 13.0 | 25.02 | 17.90 | ）． 731 |
| 4 A | 17.5 | 24.05 | 17.79 | 1．917 |
| 4 e | 17.5 | 24.86 | 17.73 | 1.993 |
| 4 C | 18.0 | 25.44 | 18．01 | 1.417 |
| 5 A | 17.0 | 25.37 | 19．56 | 1.199 |
| 5 5 | 14.0 | 26.79 | 13.44 | 9． 391 |
| 5 C | 17.2 | こ7．13 | 19.45 | 1.417 |
| 6 A | 17.0 | 25．tio | 19.40 | 1．3）3 |
| $\bigcirc \mathrm{CH}$ | 13.0 | 21.05 | 10.20 | 1．7．4 |
| 6 C | 14.0 | 26.92 | 19.90 | 2.130 |
| 7 A | 17.0 | 26.13 | 10.30 | ）．931 |
| $7 \mathrm{7C}$ | 17.5 | こち．」3 | 13.51 | 1）． 372 |
| 7 C | 17.0 | 25.33 | 13.15 | 3.931 |
| \％A | 17.5 | $\therefore .17$ | 13．61 |  |
| 3 B | 19.0 | 76.40 | 15.74 | 3.136 3.201 |

FAOLLE 」.?
TEMPL fATUPE, SALINITY, DENSITY AND CHECRGPHYLL 'A"
AT DEPTH $=3$ METERS

| STATICN | TEFPERATURF <br> ICEGREES <br> CENTIGRADEJ | SALINITY | SIGMA 'T' | CHLCROPHYLL ${ }^{\prime \prime}$ (MICZEGRAMS per literj |
| :---: | :---: | :---: | :---: | :---: |
| 1 A | 15.0 | 28.72 | 20.02 | 1.526 |
| 1 B | 16.0 | 26.20 | 15.03 | 1.309 |
| 1 C | 14.0 | 20.29 | 19.51 | 1.635 |
| 2 A | 17.0 | 25.32 | 18.52 | 1. 744 |
| 29 | 11.5 | 20.11 | 19.32 | 1.902 |
| 2C | 15.0 | 20.30 | 14.38 | 2.239 |
| 3 A | 12.0 | 27.46 | 20.78 | 1.535 |
| 3 B | 10.0 | 27.28 | $2 C .97$ | 1.5.? |
| 3 C | 19.0 | 29.07 | 22.36 | 1.199 |
| 4 A | 10.5 | 27.39 | 20.97 | 1.744 |
| 4 B | 10.0 | 27.03 | 21.03 | 1.353 |
| 4 C | 10.5 | 26.18 | 20.03 | 1.199 |
| 5 A | 12.5 | 28.51 | 21.50 | 2.071 |
| 50 | 9.5 | 2 E .18 | 21.74 | 1.962 |
| 50 | 11.0 | 73.67 | 22.04 | 2.398 |
| 6 A | 11.0 | 23.29 | 21.59 | 1.744 |
| 68 | 9.5 | 29.30 | 21.79 | 2.597 |
| $\in \mathrm{C}$ | 10.0 | 23.91 | 22.23 | 2.371 |
| 7A | 12.0 | 27.10 | 2C. 50 | 1.635 |
| 73 | 12.0 | 27.03 | 21.98 | 1.962 |
| 7 C | 12.0 | 28.54 | 21.54 | 1. 7 +4 |
| SA | 1. 3 | 20.50 | 21.39 | 1.179 |
| $\pm 13$ | 11.5 | 23.42 | 21.61 | 1.536 |
| $b \mathrm{C}$ |  |  |  |  |

TABLF 5.3
ATSPE, SALINITY, DENSITY AND CHLGRDPHYLL "A" AT OEPIH = 6 METERS

| $\begin{aligned} & \text { BEDATURE } \\ & \text { =GORFS } \end{aligned}$ | SALINITY | SIGMA 'T' | $\begin{aligned} & \text { CHLCROPHYLL "A" } \\ & \text { INICPGGRAMS } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 'IGRADE) |  |  | PEP LITER) |
| 3.5 | 25.54 | 22.92 | ). 763 |
| 9.5 | 29.34 | 22.64 | 0.763 |
| 19.0 | 20.50 | 21.96 | 2.616 |
| 11.0 | 29.90 | 22.84 | 1.199 |
| 7.0 | 29.12 | 2?.02 | J. 545 |
| 11.0 | 29.32 | 22.34 | 2.213 |
| 9.9 | 29.90 | 23.16 | J. 931 |
| 3.5 | 29.93 | 23.23 | 0.654 |
| 3.5 | 25.01 | 23.00 | 0.436 |
| 2.5 | 25.61 | 22.78 | ). 327 |
| 3.5 | 2'-63 | 22.67 | 0.763 |
| 3.3 | 21.07 | 24.17 | 0.219 |
| S.4 | 20.34 | 23.20 | ).446 |
| 3. 2 | $2 \% .30$ | 22.80 | 0.436 |
| 3. 5 | 30.4 | 23.65 | $9 .+36$ |
| 9.0 | 24.65 | 22.96 | 3. 3.27 |
| 7.5 | $\therefore 2.54$ | 22.02 | 0.436 |
| 5.5 | 29.65 | 72.89 | 0.753 |
| 9.0 | 29.0\% | 23.13 | 0. 314 |

### 5.1.4 Conclusions

There is nothing dramatic revealed by the temperature, salinity, and density data.

The more dense water fills the deeper depths of the Cove. This would be consistent with the existence of a current through the Cove.

There is no indication of an effect by the Callahan mine outfall on the temperature, salinity or density patterns in Holbrook Cove during the period of this study. 5.1.5 Recommendations

More electronic analyzing equipment is needed. Titrating is an especially long, tedious operation which leads to error.

A greater quantity of data is required to build a better picture of Holbrook Cove temperature, salinity and density patterns. Priority should be given to a number of samplings of the same area at different times of day. Then the variance of the data with respect to time could be related to water motion. 5.1.6 Detailed Procedure 5.1.6.1 Sampling Plan

To facilitate relating the temperature and salinity data to the biological accuracy results, an identical sampling grid was used for both projects (see Figure 5.2). 5.1.6.2 Sampling Technique

The sampling was accomplished using the water sampling bottles built in conjunction with this project. Once at the sampling position, determined by sighting angles on shore landmarks, the depth was determined using the fathometer on R.V. LOBSTER, the boat from which the samples were collected. It was then decided how many bottles spaced at depth intervals of three meters could be lowered.

Once this had been ascertained, the bottles were readied on the rear deck of the boat along with labeled, plastic-capped storage containers. The sampling bottles were attached to the heavy line at intervals of three meters as the line was lowered.

The bottles were triggered at the desired depths. They were then hauled up and the water in each bottle was emptied into a labeled container.


Figure 5.2

## Sampling Grid

At the same station, the bathythermograph was lowered and retrieved. Its data slide was then removed and stored for later analysis.

### 5.1.6.3 Sampling Analysis

Once back at the laboratory, the water samples were titrated to determine chlorine content, using the silver nitrate method. The data were then converted to total salinity using the general formula:
$S=0.03+1.8050 \mathrm{cl}$
(where the units are parts
per thousand)

The salinity was then tabulated according to station and depth.

The temperature data were drawn from the bathythermograph slides. For each station, the correct slide was read for the water sampling depths. The resulting temperature corresponded to the depths of each sample, and was tabulated next to salinity.

Using this temperature and salinity data, the U.S. Navy Hydrographic Tables were used to compute $\sigma_{t}$. $\sigma_{t}$ is a parameter relating the density ( 0 ) of a water sample to the density of pure water (pure water has a density, $p$, of l.0000).* The density of the water sample is related to pure water by using the equation

$$
\sigma_{t}=(\rho-1) 1000
$$

If $\rho$ equals 1.02575 , then $\sigma_{t}$ equals 25.75 . It should be noted that the effect of pressure on density was not included because it is minimal for the depths in the Cove.
5.2 Chlorophyll Patterns in Holbrook Cove

### 5.2.1 Objective

This portion of the ecological survey is designed to quantitatively measure the distribution pattern of chlorophyll in the Holbrook Cove sampiing area. A marked increase in chorophyll concentration with increased distance from the Callahan mine

[^7] and R. H. Fleming, 1942, The Oceans, Prentice-Hall, Inc., N.J.
outfall would suggest that the effluent from the outfall is harmful to the diatom population and therefore has an unbalancis effect on the entire ecosystem, since diatoms are a major soura of food for the Cove inhabitants.

### 5.2.2 Background

Gentile and Erickson $(1971)^{l}$ in their study of the Goose Pond area were able to make a direct correlation between the effluent, rich in heavy metals (notably copper), and the growt inhibition of a particular diatom, Cyclotella nana. The abilit of the water to support Cyclotella decreased as the mine outfall was approached. When a chelator was adđed to the samples, rendering the copper inert, the diatom population increased. Although this was not conclusive evidence, it does suggest that heavy metal pollution from the outfall is upsetting the plankta community.

The method used by this experimenter was to collect sample at various depths from stations upstream and downstream of the outfall, giving a fairly accurate cross section of the entire sampling area. Tests were made for a specific chlorophyll concentration, referred to as Chlorophyll 'A,' which is the major green component of the particular diatom in question.

## 5.2 .3 Results

Using water bottles, 106 samples were taken. 105 were analyzed, one being lost. The results are found in Figures 5.3 5.4 and 5.5 as well as in Tables $5.1,5.2$ and 5.3. The data it the tables are the Chlorophyll ' $A$ ' concentrations in micrograms per liter ( $\mu \mathrm{g} / \mathrm{l}$ ) for each sample. The station numbers 1A, 1B, lC, etc., refer to the stations in Figure 5.2 . 5.2.4 Conclusions

One of the major assumptions about which this research project was planned was that the flow from the Callahan mine outfall would be continuous throughout the sampling period. Based upon observations made by the sampling team, it appears that no flow occurred during the entire month of July. This circunstance casts doubt upon the hypothesis that the heavy metal ion concentration would be the greatest near the mouth of the outfall, since the waters of the cove are either ebbing or
Holbrook Cove



$$
-40-
$$


flooding most of the time. It seems more logical that, if metals are concentrated in the area, the effects would be mok noticeable in the deep water pockets north and south of the outfall.

In examining Figures $5.3,5.4$ and 5.5 , it appears that Chlorophyll ' $A$ ' concentrations are greatest at a depth of abo three meters and least at depths of $s i x$ meters or more. Then does not appear to be a significant variation related to dis. tance from the Callahan mine outfall.

It should be noted that the samples were all coilected during a flood tide. The samples for stations $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 2 \mathrm{a}$ 2B, 2C, 3A, and 3B were collected during the morning of July 4 The samples for stations $3 C, 4 A, 4 B$ and $4 C$ were collected dura the evening of July 26. The samples for the remainder of the stations were collected during the morning of July 27.

Due to the violation of the basic assumption relating to continuous flow from the Callahan mine outfall, it is impossibl to draw any conclusions with respect to the effect of the outf 5.2.5 Recommendations

In future attempts to determine the effects of a source of heavy metal concentrations (as the callahan mine outfall mal be), the water samples should be analyzed for the concentratio of heavy metal ions present. This will be difficult since the concentration will be extremely low, but it would appear to be essential if the effect of heavy metals on Chlorophyll ' $A$ ' is to be determined with confidence.

Sampling plans should be expanded to permit collection of at least three water samples at three different times at each depth and location. The size of the sampling team should be expanded to permit collection of water samples over the entir grid in a period of not mon water samples over the entire extent of either a more than six hours (the approximate at least three stude fooding or ebbing tide). This implies that 5.2.6 Procedure students will be required to analyze the samples As soon as possibe references 2 and 3)
filtered through possible 25 milliliters of each sample were filtered through a one-inch Gelman Glass Fiber filter and frove

The filters carrying the chlorophyll were then homogenized and extracted with 908 acetone solution and fluorated, giving a reading " $f_{0}$." Each sample was then acidified and another reading taken, "Ea." The amount of chlorophyll "a" per sample in micrograms per liter ( $\mu \mathrm{g} / \mathrm{l}$ ) was derived from the equation "chla $=$ $0.109\left(f_{o}{ }^{-f}\right)$."

## REFERENCES

1. Dow and Hurst, Jr., Rehabilitation Problems of the Cape Rosier Open Pit Mine, Dept. of Sea and Shore Fisheries, Augusta, Maine, Nov. 1971.
2. Duxbury and Yentsch, Plankton Pigment Nomographs, J. Marine Res. 15, 1956, pp. 92-101.
3. Richards and Thompson, A Spectrophotometric Method for the Estimation of Plankton Pigments, J. Marine Res. 11, 1952, pp. 156-172.

### 6.0 BIOLOGICAL EFFECT OF HEAVY METAL POLLUTANTS

### 6.1 Objective

At Cape Rosier, Maine, a copper-zinc open pit mine has been discharging effluent rich in heavy metals into Holbrook Cove. Recent studies have shown that this type of metal pollo tant is harmful to marine organisms, and probably to human health. ${ }^{l}$ In planning this study, it was felt that actual measurements of metal ion concentration in water and sediment at various stations might lead to a better understanding of the effects of these pollutants when correlated with benthic faumal population distributions and photosynthetic primary production in the area. The purpose of this facet of the overall study val to gather data concerning the distribution of the heavy metals ( $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$, and Cd ) in the sediments near the outfall, and to correlate these data with the distribution of benthic infauna (in terms of species diversity, abundance of individuals in ead species, and biomass) in the sediments.

### 6.2 Background

In 1968, operations were undertaken by the Callahan Mining Corporation in the area near Goose Pond on Cape Rosier, Maine, to exploit local deposits of copper and zinc ore. The mouth of Goose Pond (Figure 6.1) was dammed, the pond pumped dry, and a large open pit excavation was begun. Sea water is used in the aqueous flotation and ore separation process. This water is pumped from Holbrook Cove from a site adjacent to the outfall (Figure 6.2), and used to the mill processing. It is then dumped into a settling pond, where theoretically all suspended matter is removed. The effluent is pumped into Holbrook Cove through a subsurface outfall pipe. Sump pumps which keep the open pit free of ground seepage also empty into Holbrook Cove. During the four years of operation of the mine, fine sed ment suspended in the effluent has entered the Cove and large portions have probably settled there.

It must be noted, however, that the mining operation is not the only source of heavy metal ions. Surface runoff and seasona


Figure 6.1
Callahan Mine Location


Callahan Mine Complex

## APPENDIX C

AN EXAMPLE OF THE USE OF
FIGURE 7.11

Example:
Find Height of Tide at 1125 Hours, July 5, 1972.

Date: July 5, 1972
Time: 1125 EDT 1025 EST
Barometer: 30.30"
From Tide Table (See Appendix B)
Previous Tide Level $=+9.2 \mathrm{ft}$ (High) 0605 Hours
Next Subsequent Tide Level = +0.2 ft (Low) a 1212 Hours
Hours Between High and Lowt $=(1212-0605)=6^{\mathrm{h}} 07^{\mathrm{m}}$
Feet Diff Between High and Low $=(9.2-0.3)=9.5 \mathrm{ft}$
Hours After High Tide $=(1025-0605)=4^{\mathrm{h}} 20^{\mathrm{m}}$
From Nomogram:
Uncorrected Ht $=\quad+2.1 \mathrm{ft}$ Correction for $30.80^{\prime \prime}=\underline{-0.95 ~ f t ~}-0.95 \mathrm{ft}$ Corrected Ht $\quad=+0.55 \mathrm{ft}+1.15 \mathrm{ft}$

drainage fluctuations will alter the erosion of nearby natural ore deposits, and also the resultant metal ion concentrations in the waters of Holbrook Cove. The exact pattern of effluent distributions as driven by currents and tides has not yet been determined, although sampling stations (Figure 5.2) were selected to encompass all possible effluent paths.

Of all the animals in the immediate area, only the benthic infauna have been continually subjected to the heavy metals present in the mine effluent. These animals cannot move appreciably, and thus have had to adapt to the environment of Holbrook Cove. In general, the animals that have evolved to survive in a particular environment (the boreal waters of the Gulf of Maine in this case) have the ability to successfully adapt to the range of environmental variations which occur naturally. However, even these "historical stresses" are occasionally exceeded and individual species succumb. After this stress has passed, the species may either recolonize the area, or another species may nove in and take over the first species ecological niche. The fewer of these overturns there are, the more stable is the biological community. In areas where the "predictability" of the environment is high (few abnormal stresses beyond the tolerance of all the species present), there are many species, each with a small number of individuals, and each adapted to deal with its own narrow range of ideal conditions. Where predictability is relatively low, each species must adapt to a wide range of possible environmental conditions. Since the range of ideal conditions (the niche) of each species cannot overlap with the niche of the species next to it on the spectrum of environmental factors, it is evident that there will be more niches, and thus more species, present in a high predictability environment.

In Holbrook Cove, the influx of heavy metal pollutants can be viewed as an "unpredictable" environmental stress from the point of view of the benthic community. If the community is capable of adapting to this stress, there should be no obvious change in the species composition of this community. This is the "null hypothesis" of this investigation. In order to test this hypothesis, some quantitative measure of the species diver-
sity must be employed. Several are in use at present. The rarefaction analysis method of Sanders ${ }^{2}$ shows the diversity graphically, although computation and data presentation are cumbersome and tedious. The information function of Shannon ${ }^{3}$ is simpler. The number of individuals of each species in the community is calculated as a fraction of the total number of individuals in the communty. This fraction, $P_{i}$, is then iterated over all species, and then the value of $\because p_{i} \log _{2} p_{i}$ is calculated for the community. This gives a value which is sample size-independent. The application of this function to biological systems has recently been questioned by Hurlburt, ${ }^{4}$ who proposes several alternate diversity indices. Once all data are assembled in this investigation, both Shannon's and Hurlburt indices will be employed.

All organisms present in each sample must be identified and counted. For practical purposes, this is impossible. The sediment must be sieved to remove very small sediment (some small animals are obviously lost in the process). Reish ${ }^{5}$ calculated the optimum screen mesh size to maximize animal reter tion and minimize the extensive labor necessary to sort the samples. In practice, there is also an optimum number of grab samples to be taken at each station to assure that all species it the community are represented in each station sample. This must be determined in situ, after a few samples have been sorted.

In Holbrook Cove, a grid of sampling stations was laid out (Figure 5.2) in the waters near the outfall based on the sediment metal concentrations determined by the Federal Water Quality Administration ${ }^{6}$ in the immediate area. One objective is to duplicate the FWQA study in more detail for a small area. Hopefully, contour charts for the levels of copper, zinc, lead and cadmium, as well as charts of the species diversity indices may be drawn from the data resulting from sampling the stations on the grid. Correlation tests on these data may yield interesting results.

Since species diversity in this case may be influenced by other factors, these must be investigated and their influence on the community assessed, the 1971 Summer Laboratory report
(MTTSG 72-3) investigated temperature, salinity, nutrients, dissolved oxygen and currents. No abnormalities were evident. Other phases of this investigation (Sections 5.1 and 5.2) duplicated portions of those studies, again revealing no abnormalities. Sediment particle size distribution does play a significant role in determining benthic community structure. 7 Most samples in the area were composed of 60 silt, 208 clay and 20 号 fine sand. However, several stations were located on bare rock, or on the shallow sill of glacial sand and gravel that forms the western end of Holbrook Covo. This is a biological community very different from that found in the mud of deeper water, and therefore wi.] not be included in the forthconing discussion of the biological data with referonce to heavy metals.

Cadmium, lead, copper, and zinc were chosen to be sampled because they oxist in large enough concontrations to be measured With available Atomic Absorption Spectrophotometry equipment Had mry timargt to be madior pollutants in the area. ${ }^{8}$ Chromium talia bo?ow AAS dutoct jor limits. llowevor, once data has been

 this inf ef timet. Jolurst Dom, oirector of Research, Maine

 Ghe old mine shal: ani purpinct out- of the rain-filled pit beHinct the nowly ronstrmated dam at Goose Falls, heavy metal levels in clums, sediments, and rock weeds cannot be interpreted as baforound onl $\because$. This sianificant and dramatic increase in all threc megia aftor ore sfparation can be wholly attributed to the plant ororation and tle discharge of effluents into Goose
 Environmentaj protertion Agency, is more conservative in its correfaion letweer cosia metal concentration and the mine effluort, bit recommends that pablio wator supplies in the area be momitored duo to high load concentration at two of their sample statione. It shote be noter? here that this report has been criticized by Dow and otfer Maire state officials. lo Tidal staye,
climate and geological makeup affect concentrations of trace metals, but it is not yet fully understood how and to what degre In addition, agreenent as to whether sediments adsorb toxic iom rendering them inert or whether they are a continuing source of contamination has not been reached.

It has been found that heavy metals do not concentrate along trophic levels. ${ }^{11}$ In that particular survey of the Illinois River, the order of concentration magnitudes of $\mathrm{Cu}, \mathrm{ki}$, $\mathrm{Fe}, \mathrm{Pb}, \mathrm{Cr}, \mathrm{Li}, \mathrm{Co}, \mathrm{Cd}$ was as follows: sediments $>$ worms $>$ clan $>$ fish > water. Zinc was found in greater concentration in cla than in worms. According to a report by Dow on "Estuarine communities and Pollution," 12 "Evidence does not support the assur tion that heavy metals in estuarine sediments, marine algae, ad shellfish are directly related to the level of these metals in the overlying waters." It is important, therefore, to measure metal concentrations in mud and organic samples as well as in the water. The sand worm, second only to the blood worm in economic value per unit weight to the Maine fishing industry, $h$ a reported toxicity threshold of about 0.1 parts per million copper (Raymont and Shields, cited by Dow). ${ }^{8}$

A previous study of the waters around Cape Rosier showed copper concentrations ranging from 0.1 to $0.4 \mathrm{PPM} .{ }^{8}$ Dow beliem that lead is probably the most hazardous metal pollutant at the mine site for both humans and comercial shellfish. ${ }^{12}$ A study of the effect of cadmium upon humans is being conducted intermittently by M.I.T. Human intake of toxic metals comes through drinking water sources and consumption of shellfish. In partio lar, bivalves have the ability to concentrate heavy metals to 6.3 Results

The analysis of the 25 Holbrook Cove sediment and water samples for heavy metal concentrations and benthic fauna has not been completed at this writing. Shortages of equipment availability (mostly an inability to gain access to AAS equipment) and difficulties with impurity interference (Section 6.6) have hindered the determination of heavy erence (Section 6.6) have is expected that these dif of heavy metal concentrations. It is expected that these difficulties will have been overcome to
allow completion of AAS analysis by March 1973.
Benthic faunal sorting and species identification is also proceeding slowly. The 0.25 mm screen mesh size, as determined from Reish's ${ }^{5}$ analysis, used in sieving the grab samples causes the retention of a large volume of materials, which must be picked through under a dissecting microscope. Average sorting times have been in excess of 20 hours for each of the three samples sorted thus far.

A basic difficulty in the faunal analysis concerns species identification. Of the 52 positively identified polychaete worm species taken in Holbrook Cove in the FWQA study, ${ }^{6}$ only 24 are named in Knowlton's ${ }^{13}$ checklist. Knowiton acknowledged that his checklist is not "all-inclusive," even though he, his coworkers and his students have sampled along the whole Maine coast for a number of years. Significantly, the two dominant polychaete species, Aricidea jeffreysii and Nephthys incisa, representing $38 \%$ and $17 \%$ respectively of all individuals taken in Holbrook Cove, have never been found by TRIGOM researchers and are thus not included in Knowlton's checklist.

The most abundant polychaete species in the samples sorted thus far has not been identified as yet. There is some internal disagreement about whether two species are being considered as one in this case. Until this is resolved, no species diversities can be calculated.

Some trends are apparent, however. Biomass and number of individuals appear to be at a minimum at the station closest to the mine outfall: i.e., there are fewer individuals and the individuals appear to be smaller near the outfall. This could indicate an adverse influence of the effluent on the biota, but it is obviously too early to draw any correlations.

Other data would be valuable in addition to sediment faunal data. An attempt will be made to analyze locally collected bloodworms ${ }^{14}$ (Glycera dibranchiata), sand worms ${ }^{14}$ and clams (Mya arenaria) for heavy metals in (Nereis virens), eral attempts were made to heavy metals in their tissues. Sevlaboratory, with the of various concentrations of intention of studying the effects of various concentrations of heavy metal ions introduced into the
sea water. However, each time, high natural worm mortality was observed due to high ambient temperatures, and it was finally concluded that the necessary refrigeration was not available, so the project was abandoned.

### 6.4 Conclusions

As stated before, sample analysis is not yet complete, so no conclusions are possible at present.

### 6.5 Recommendations

During July 1972, the Callahan Mining Corporation was beginning to raise salmon in a fish trap floating in Holbrook Cove. They planned to monitor the metal concentration in the salmon flesh, with the ultimate intention of marketing the salmor on a large scale. In their proposal, the deep open pit would be filled with sea water and used for fish culture. Considering the remarks made by Dr. Ruth Patrick, ${ }^{15}$ this would be highly undesirable.

As of July 1972, the mining operation had apparently been closed down. Weir Ditch, which had poured effluents into Weir Cove on the southern side of Cape Rosier, had been another major source of heavy metal contamination. As of July 28 , its seaward end had been filled in. Although monitoring of the site should be continued, it is probably not within the capabilities of the student Summer Ocean Engineering Laboratory to continue the systematic sediment monitoring on a large scale, recognizing the di: ficulties which were encountered attempting to use analytical techniques and equipment and the great amount of time necessary sort benthic sediment samples. However, monitoring of metals in worms and clams in the Cove is relatively simpler, and should be continued if AAS equipment is available.
6.6 Detailed Procedure
6.6.1 Sampling Plan

A grid pattern consisting of 24 stations was selected on the basis of previous sampling and analysis done by the FWOA. ${ }^{6}$ Rasically, a $3 \times 8$ pattern was laid out in the channel separatir Holbrook Island and Cape Rosier. If time allowed, multiple sec: ment samples would be taken at each station, assuring adequate sampling of the benthos.


Sampling Technique
Samples were taken with a modified Petersen grab sampler at most stations. Some stations were coarse gravel or bare rock, preventing adequate grab sampling. The grab was handoperated from the deck of the lobster boat.

All samples were sieved as soon as possible after return (usually within 6 hours) through 0.25 mon sieves, preserved with $10 \%$ formalin, and buffered to saturation with sodium borate (preventing calcareous shell decomposition). Subsamples for AAS analysis were placed in acid-rinsed containers and preserved with $2-3 \mathrm{ml}$ concontratod $\mathrm{HNO}_{3}$. 6.6 .3 Sample Analysis

Sorting of benthic samples was accomplished under low magnification microscopy. All animals retained by the sieve were transferred to a methyl alcohol preservative. Identification was dccomplishod using standard available keys.

Anatysis of sediment and water samples will be done by atomid: Absompton spertrometry using Jarreil Ash instrumentation. 'The methon followed wilf be the stancard methods used by the Envimoment Drouection Amone, ${ }^{16}$ with minor alteration by the M.I.T. lab. Fithough motal ion concentrations of some of the Gonse falls stations probably fall quite low, previous surveys of the aroa (Fwon) ${ }^{6}$ have not found it necessary to use special low detection limit metrods of analysis, especially since interferences are more common with these methods.

Interferences known as matrix interferences occur when there are high concentrations of acids or dissolved salts, as would be the casc with the samples consjdered here. These are controlled by dilution or by matching the concentrations of major constituents in samples and standards. When there is no way of matohing concentrations, the method of addjtions ${ }^{17}$ is wsed. For analysis of the samples taken from Holbrook Cove, a rinse to remove sodium interference will be adcquate. Several runs will be made to determine statistical confidence intorvals.

## REFERENCES

1. Zwick, David and Marcy Benstock, "The Dangor. Water Waste. land." Bantam Books, Grossman Publ., N.Y., i971.
2. Sanders, Howard ${ }^{2}$., "Marine Benting Niversity: A Compara. tive Study." Amer. Natur. 1 102: 243, 1968.
3. Shannon, Claude E., "A Mathematical Theory of Communication." Bell System Tech. Journal, $27,1948, \mathrm{PP} .379-423$,
$623-656$.
4. Hurlburt, Eric, "The Nonconcept of Species Diversity: A Critique and Alternative Parameters." Ecology, 52 (4),
1970 , $p p .577-586$.
5. Reish, D. J., "A Discussion of the Importance of Screen Size in Washing Quantitative Bottom Samples." Ecology, 40,
1959, pp. 307-309.
6. Federal Water Quality Administration, 1970.

Strip-Mine Discharges on the Marine Envision Effects of Rosier, Maine. FWQA, Needham Heights, Mass.
7. Sanders, Howard T., "Benthic Studies in Buzzards Bay. Animal-Sediment Relations." Limnol. and Oceanogr. 3
1958, pp. 245-258.
8. Dow, Robert L., Toxic Metals in the Marine Enviromment,
First Maine Environmental Congress. Maine Dept of Sea First Maine Environmental Congress. Maine Dept. of Sea and Shore Fisheries, Augusta, Maine, 1969.
9. Dow, Robert L., Influence of Effluents at Cape Rosier, Maine Dept. of sea and Shore Fisheries, Augusta, Maine, 1971b. Unpublished report.
10. Dow, Robert L, and John W. Hurst, Statement given at the Environmental Improvement Commission Public Hearing, Blue tion of Kerramerican concern waste discharge license applicaand Shore Fisheries, Inc. (revised), Maine Dept. of Sea

Augusta, Maine, 1971a.
Dept. of Sea and Estuarine Communities and Pollution, Maine Unpublished report.
12. Mathis, B. J. and T. F. Cummings, "Distribution of Selecte Metals in Bottom Sediments, Water, Clams, Tubificid Research Report \#4l, of the Middle Illinois River." Illinois, Urbana, IIl, Water Resources Center, University of
13. Knowlton, Robert E., "Preliminary Checklist of Maine Marine Invertebrates." Publ. No. I, The Research Institute of the Gulf of Maine, Portland, Maine, 1971.
14. Dow, Robert L. and $J$

States Marine Fisherieseaser, "Marine Bait Worms." Atlantic Florida.
15. Dow, Robert L. and John W. Hurst, "Rehabilitation Problems Shore Cape Rosier Open Pit Mine." Maine Dept. of Sea and
16. Environmental Proteotion Unpublished report. Analysis of water and Wastes." 1971. EPA, Cincinnati, Ohio,
1.7. Perkin Elmer Corp., "Analytical Methods for AAS." Norwalk,
Conn., 1971.

### 7.0 INSTRUMENTATION

7.1 Karman Vortex Trail Current Meter
7.1.1 Objective

The basic goal of this project is the evolution of a con pact and reliable current velocity measuring device utilizing the regular velocity-dependent oscillation of vortices behind a blunt object in a moving fluid. Several general design criteria were established: (1) The instrument must be capable of being set and monitored without diver assistance; (2) the output of the instrument must be recordable on magnetic tape; (3) data reduction should be convenient.

### 7.1.2 Background

Work was carried out during the 1971 M.I.T. Sea Grant Summer Laboratory based on similar objectives (see M.I.T. Sea Grant Report Number 72-3). These attempts were unsuccessful. The experience gained at that time allowed the successful redesign of the instrument during the 1972 Summer Lab. The basis of operation of the instrument is the velocity-dependent vortex shedding of a blunt object moving with respect to a fluid. The wake pattern generated by this object is known as a Karman Vorte Trail. This wake pattern is characterized by periodic shedding of vortices from alternate sides of the blunt object. Each shed vortex moves downstream causing lateral movenent of. Each shed in the wake of the object. There movement of the fluid detection of this movement. The instrument is based on the not important, but rather. Here the magnitude of movement is tion of the fluid behind the frequency of the change in directhe frequency of vortex she blunt object is desired and, thus, rically related to the veloding. This Erequency is then empibration of the meter. 7.1.3 Results

The fina
of one day off the dock, based on a rather short testing period locations in Holbrook at Castine and three days at varying instrument, coupled with $a$, were in general successful. The on the surface, provided dataple oscillator, recorder and timer of the test period. The cira at half-hour intervals over most the recorder, however The circuit interfacing the instrument with
of unreadable data. Data reduction, while intended to be accomplished electronically, was easily handled aurally, each twentyfour hours worth of collected data requiring approximately fortyfive minutes to put into tabular or graphic form. Graphical results of several periods of monitoring are shown in figures 4.2 and 7.1. The validity of the data is difficult to determine. At present, thore is no other tabulated data concerning current flow in the test areas. The results do show fair correlation with times of high and low tide. For example, in figure 7.1 no current was evident shortly before high tide at 2324 hours and low tide at 0554 hours, the times being appropriate for dockside at Castine. The irrcqularity of the current profile presented for Holbrook Cove may well represent the apparent current surges which were noted on several occasions by the observers of the current drogues used in this area, as described in section 3.0 of this report.
7.].4 Conclusions

Although the test period was too short to allow conclusive ovaluation of the instruments reliability, sensitivity and range in open water, the results would indicate that the meter offers a valid substitute for impeller-type current meters, when measuring low velocity currents. The instrument holds up well under rough treatment and requires no diver assistance in mooring.

### 7.1.5 Recommencations

The success achieved, though limited, would recommend further work on the development of this instrument as a component of a complete system for current monitoring. Most seriously needed would be the perfection of the interfacing electronics. Completion of the digital recording system which was undertaken during the lab would offer considerable advantages and possibilities in the area of data reduction. Concerning the meter itself, one could use pressure transducers as the means of converting the fluid motion to a modulated electric signal, replacing the present arrangement of fin and photocell.

### 7.1.6 Detailed Procedurc

Preliminary design of the instrument took place in the months after the 1971 Summer Lab, and was based on experience

$$
-57-
$$



Figure 7.1
Kamman Vortex Trail Current Meters
Results at Castine
gained during the lab. An attempt was made to build a current meter using the vortex shedding phenomenon. The attempt involved trying to sense the frequency of vibration of a wire placed in a fluid flow. The presence of the wire caused the development of a Karman Vortex Trail. In simplified terms, the periodic lateral displacement of the fluid caused the wire to vibrate at the frequency of the vortex shedding. The attempt was then made to sense this vibration using electromechanical means. Due to the very small displacements and energy transfers involved, little success was achieved. It was decided to increase the dimensions to afford greater ease in detection of the movement of the fluid. A one-inch cylinder was used to generate the vortex trail. Sensing of the frequency of vortex shedding was done by a fin mounted on needle bearings in the flow behind the cylinder. Electrical pickup was accomplished by placing a magnet on the fin and positioning a reed switch close enough to be activated by the magnet. This version provided linear response from three-tenths of a knot to just below two knots with sensitivity to one-tenth of a knot. The instruments' dimensions were approximately two inches by three and one-half inches by six inches.

The primary shortcoming of the instrument was that its range of operation was too high to be considered for use in tidal current surveys. Several things were done in an attempt to lower the range of response. First, the effective Reynolds number of the instrument was increased by providing a venturi at the intake of the meter, thus increasing the current velocity seen by the instrument over that of the ambient flow. Little improvement was noted. It is believed that the force imparted to the sensing fin by the fluid movement was of the same order as the force exerted by the magnet on the reed switch, so the sensing of the movement of the fin was relegated to a photo cell rather than the proximity switch and magnet. Tests demonstrated an extension in the effective range of instrument down to about three inches per second. It was still apparent that more energy must be imparted to the wake to obtain greater sensitivity. To achieve this end, an ellipse replaced the cylinder. It was oriented with
the major axis perpendicular to the flow. It had been observed that the ellipse generates a wake that is wider than its greates: dimension whereas the wake of a cylinder is roughly the same width as its diameter. The meter now showed a response down to one inch per second ( $1 / 20$ of a knot) under test tank conditions. 7.1.7 Fabrication

The physical layout of the meter is shown in Figure 7.2. The fin in the wake of the cylinder responds to the movement of the fluid. This lateral movement becomes a rotational movement of the wires used to support the fin. The interposer, rigidly attached to the upper supporting wire moves back and forth between the photocell and light source, which modulates the output of the oscillator. The prototype instrument had dimensions of two inches by six inches by twenty inches. The large length was provided in an attempt to reduce turbulence encountered by the ellipse caused by the leading edges of the duct. All electronics, except the photocell and light source, are designed to be on the surface, thus limiting the amount of waterproofing that must be accomplished. The light source and photocell were cast in plexiglass with their individual leads connected to a four-wire hydrophone cable to the surface. These connections were sealed by simply dipping the soldered joints in fiberglass resin. No trouble was encountered in this method of waterproofing. The original system design called for the meter to be cornected to an analog-to-digital converter which would feed digit: data to a recorder. This equipment was not ready for use, however, so a simpler method of providing recordable signals was used. The photocell, having a change in resistance which was dependent on the change in light to which it was exposed, was used as part of an astable multivibrator. As the resistance changed, the output frequency of the multivibrator changed. A: frequencies were in the audio range and were easily recorded. As was mentioned earlier, the data was readily reduced aurally. This configuration results in a signal which is frequency-modulated at the rate with which the ellipse sheds vortices.


Figure 7.2
Karman Vortex Trail Meter Layont

### 7.1.8 Calibration

Calibration was carried out, using the instrument towing carriage of the wave tank in the Hydrodynamics Lab at M.I.T. This was used in preference to the ship model towing tank, due to the very low control speeds which could be achieved. Responst of the meter from one inch per second to twelve inches per second was obtained. Calibration data is shown in Figure 7.3 along with a curve showing theoretical response. The theoretical curve is based on the following empirical formula relatim frequency of vortex shedding to fluid velocity:

$$
\mathrm{n}=\frac{\mathrm{SV}}{\mathrm{~d}}
$$

where $n$ is frequency, $s$ is the Strounal number, $V$ is the velocit and $d$ is the characteristic diameter (the major axis of the ellipse, $1-7 / 16^{\prime \prime}$ ). The strouhal number is constant in this regime of Reynolds number (greater than 1000). After the conch sion of operations in Castine, the ship model towing tank was used to determine the angular response of the unit to test the feasibility of using the instrument as a current direction ind cator. It was hoped that the response would be such as to alla two of the instruments to be mounted in a fixed position at right angles to each other to give vectoral information as well as data about the magnitude of the current. Tests showed that the response of the instrument intercepting the current flow at angles of greater than thirty degrees was too poor to allow su: a configuration.

### 7.1.9 Meter Implacement

The mooring of the current meter is designed to be as si ple as possible. To maintain a stationary position a fifty-pw weight is used at the bottom. A line runs directly up to the meter at the desired height above the bottom and is fastened rigidly to the housing about eight inches from the leading ed on the underside of the instrument. Leading upward from the same position on the top of the housing is a line to a submerf float. This float maintains the vertical position of the mete A short line is attached on the float line and leads to the tid of the instrument to keep it horizontal. The electrical cable


Figure 7.3
Karman Vortex Trail Current Meter Calibration Curve
(for power and data transmission) is attached at various points to the instrument support cable and is supported at the surface by its own float and a five-quart pressure cooker which provides the watertight housing for the electronics and recorder. $A$ retrieving line is attached to the submerged float and again supported by a surface buoy. No trouble was experienced with this mooring for this instrument. It appeared to allow adecruate freedom for the instrument to orient itself with the current flow and showed no sign of drifting off station. 7.2 Impeller-Driven Current Meter
7.2.1 Objective

The objective of this project is the development of a cos pact and reliable current velocity measuring device utilizing an impeller. Several general design criteria were established: (1) The instrument must be capable of being set and monitored without diver assistance; (2) the output of the instrument must. be recordable on magnetic tape; and (3) data reduction must be convenient.

### 7.2.2 Background

An impeller current velocity measuring device was designe for the 1971 Summer Ocean Engineering Laboratory (see Figure 7.4). This device consisted of a seven-inch-diameter cylindrica housing made of plexiglas tubing, a 24 -inch-diameter impeller fashioned from fiberglas, a plexiglas shaft which was driven by the impeller and turned a 5 -inch-diameter disc (also fabricated of plexiglas) in which 60 small holes had been drilled at equal intervals on a circumference of four and one-half inches. The disc was used to alternately shadow and expose a photocell to a light source. The unit proved to be cumbersome and unreliable; hence a redesign was undertaken.

The design of the 1972 impeller curcent velocity meter incorporates many improvements. These include: reduction in size and bulk, an improved impeller, and a better harness (used in securing the meter to the mooring). In the redesign a light source and sensing device (photocell) are sealed in the flanges fore and aft of the impeller hub. The impeller hub has several holes drilled parallel to its axis through which light passes

Page 64


Figure 7.4 Tmpeller Current Meter (1971 Versinn)
when one of the holes is lined up with the light source and the sensing device. In this way several pulses are received from the meter for each revolution of the impeller, permitting accurate readings at low current velocities. The leads from the light source and the sensing device are led into a hydrophone cable, and through the cable to the surface instrument package. The instrumentation package was placed in a pressure cooker which also served as a float. The pressure cooker contained a motorcycle battery, a small amplifier for the signal from the meter, a clock, and a cassette recorder.

### 7.2.3 Calibration of the Impeller Current Meters

The current meters were calibrated in the M.I.T. towing
tank. The major problem which had to be overcome was that the fluorescent lighting in the towing tank interfered with the photocells in the transparent current meters. This was rectified by shutting off the lights in the towing tank during calibration runs. The current meters were painted black before they were shipped to Castine, Maine, to prevent the ambient light from interfering with the operation of the meters when they were moored at the test sites.

The calibration procedure for the three meters constructed in preparation for the 1972 Summer Ocean Engineering Laboratory consisted of towing the meter at speeds of from 0.2 knots to 1.5 knots and employing a frequency counter to ascertain the pulses per second received from the photocells for each speed. It should be noted that the calibration results from all three meters are identical. The empirical correlation between the pulses per second and the speed is:

```
speed (knots) = 0.25 + 0.53 (pulses/second)
```


### 7.2.4 Mooring

The mooring of the current meter is fairly simple (see Figures 7.5 and 7.6). A 50 -pound block is used as an anchor. A line is passed up from the anchor to the meter and then to a float with 25 pounds of buoyancy moored just beneath the surface. Thus there is a 25 -pound tension in the line at all times. A slack line attached to the hydrophone cable is led to the instrument package floating on the surface. A buoy is attached to the


subsurface float to mark the meter. This arrangement permits the cassette to be changed without disturbing the current meter. 7.2.5 Conclusions

The meters performed as designed. The problem with ambient light interfering with the photocells was overcome by making the flanges and impeller hub opaque. A problem developed with mooring harness in that the meter was attached at its center of gravity and when it was raised or lowered it tended to try to rotate until its axis lined up with the mooring line. In one such case the impeller of one meter was broken.

### 7.2.6 Recommendations

The mooring arrangement should be redesigned to correct the deficiency exhibited when the meter is raised or lowered during implantation or retrieval. A device that will measure current direction should be devised to act as a companion instrument so that both current direction and velocity can be measured at any given instant and recorded. 7.3 Current Direction Indicator
7.3.1 objective

The major inadequacy of the current metering equipment became apparent during the initial weeks of the project. This inadequacy lay in the inability of the meters to distinguish current direction. It was decided that a companion instrument capable of yielding data on current direction was required. Two basic criteria were established: (1) The instrument should not require diver assistance; and (2) the output should be compatible with the digital recorder which was under development for use with the current meters.

### 7.3.2 Background

During the 1971 Sumner Ocean Engineering Laboratory, construction of a current direction indicator was attempted using a variable capacitor which tuned an oscillator circuit whose output was recorded in analog form (see Sea Grant Report No. MITSG 72-3). The instrument housing and capacitor were moored in a fixed position and a vane (which was allowed to swing with the current) varied the capacitor position. This proved very cumbersome, since it required a three-point moor, a buoying
system to maintain the indicator's position vertical, pressurization of the instrument, and considerable diver assistance. The large frictional resistance between the capacitor's shaft and the watertight seals caused problems.

The requirement that the direction indicator be a companion to the current velocity metering devices caused a drastic departure from the concept of the current direction indicator attempted in 1971. The primary changes in design criteria were as follows:

1) Since the housings of current velocity meters rotate to maintain their alignment with the current, then the housing of the current direction indicator must also rotate and the sensing device must maintain a constant orientation (as the sensing device in a gyro or magnetic conpass). In the 1971 design the housing maintained a constant orientation and the sensing device oriented itself to align with current.
2) Since the data transmitted from the current velocity metering devices are in digital format, the data transmitted from the current direction indicator must also be in digital format to permit the use of the same recording and data reduction equipment. In the 1971 design the data were transmitted in an analog format.
3) Since the designs of the current velocity meters were based upon a criterion of minimal diver involvement, this criterion must also be invoked in the design of the current direction indicator. As has been previously stated, the 1971 design required extensive diver services.

### 7.3.3 Results

To meet the design criterion that the housing of the cur rent direction indicator must rotate and the sensing element must maintain a constant orientation, the principle of the magnetic compass card was utilized. It was recognized that four binary bits will permit the transmission of sixteen digital
information bits. This characteristic can be utilized to identify digitally sixteen $22-1 / 2^{\circ}$ sectors. It is believed that, for this application, further refinement of current direction would not be sufficiently useful to justify the additional complexity of additional binary bits.

A magnetic compass card was fabricated. Four concentric circles were drawn on the card and interrupted slots were cut on the concentric circles such that rotation of the compass card with respect to the housing would alternately interrupt or pass light from one side of the card to one or more of the four photocells located in a radial line on the opposite side of the card and spaced to coincide with the four concentric circles. The sixteen sectors are identified digitally by determining which of the four photocells are exposed to the light source.

The instrument did not reach the test stage due to the late starting date. The housing is a four-inch i.d. plexiglas tube with end caps threc-quarters of an inch thick fitted with o-ring seals. The final version of the compass card uses two permanent alnico matnets and is mounted on needle bearings. The sensing unit's functional resistance to rotation was very small, but it was sufficient to affect the reliability of the orientation of the card with respect to the earth's magnetic field. The lightsensirg unit was put together and tested in the housing. No problems were found in sensing the card position using this method. However, it was discovered that a small amount of iron in one of the photocelis affected the magnets on the card. 7.3.4 Conclusion and Recommendations

The success of the sensing method makes further attempts at development of this instrument attractive. A compass card with stronger magnetic units and less rotational friction is required. If fabrication proves too difficult, a commercial compass card can be adapted. If photocells which do not affect the compass card cannot be obtained, then perhaps light pipes can be used in the proximity of the card. Completion and testing of the digital recorder and the interfacing circuitry is yet to be accomplished.
7.4 Oxygen and pH Meters

### 7.4.1 Objective

The ambitious sampling project encompassed by the Holbrou Cove Survey made the automation of the measurement of the environmental factors extremely attractive. The objective of this project is to provide instrumentation that will make the measur ment of the oxygen content and pH of water samples a simple. accurate procedure.

### 7.4.2 Background

During the 1971 Summer Ocean Engineering Laboratory, preliminary measurement of dissolved oxygen concentrations were made using the Winkler iodometric titration method. This proved to be time-consuming and laborious. In planning the biological investigation related to detemining the effect of the callahan mine outfall upon the ecology of Holbrook Cove, it became apparent that it would be necessary to monitor all environmenta conditions including the concentrations of dissolved oxygen in and the pH of each water sample. It was therefore decided to obtain a polarographic oxygen electrode and to construct an oxygen meter for use with this electrode. In addition, a sinpli design for a pH meter was noted in the November 1968 edition of Popular Electronics and it was decided to construct this device for use in the survey.

### 7.4.3 Results

Both the oxygen and pH meters were constructed. Due to limitations of time, the oxygen meter was not used. The $\mathbf{p H}$ me: was constructed, but the proper microammeter was not available and the project's volt-ohm meter was substituted. This substit tion proved unsatisfactory due to the high impedance of the volt ohm meter rendering the meter deflections too small to permit determination of the pH of the water samples to the desired limits of accuracy. The meter was tested in buffer solutions whose pH values were $4.0,7.0$ and 10.0 and the readings appeare to be correct within the limits of accuracy permitted by the volt-ohm meter.

### 7.4.4 Conclusions

Both meters appear to be operational and require only minor modification (in the case of the pH meter) for increased accuracy, and calibration (in the case of the oxygen meter). They will greatly simplify the measurements of oxygen content and pH .
7.4.5 Detailed Description of the Oxygen Meter and Probe

The polarographic oxygen probe consists of a silver tube whose diameter is one centimeter which acts as an anode and contains a gold cathode at its center. This cathode is maintained at a constant voltage of -0.8 volts with respect to the anode. Both the anode and cathode are coated with either teflon or polyethylene which permits only the gaseous oxygen to diffuse through the coating to the electrodes. This coating prevents the other ions present in sea water from coming in contact with the electrodes. The space between the teflon (or polyethylene) film and the cathode is filled with a fifty percent normal solution of potassium hydroxide.

Conductance between the anode and cathode is produced by the following chemical reaction:

At the gold cathode
4 electons $+\mathrm{O}_{2}-4 \mathrm{OH}$
(Thus, one mole of oxygen produces the flow of four electrons)

At the silver anode
$4 \mathrm{Ag}+4 \mathrm{OH}-2 \mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}+4$ electrons
(Thus, the conductivity between the anode and cathode is proportional to the oxygen concentration)

The purpose of the oxygen meter is to translate the conductance at the oxygen meter probe to a voltage which can then be read on a standard voltmeter. The operation of the oxygen meter is a follows (see Figure 7.7).

1) A reference voltage is obtained by adding in series a silicon diode and a germanium diode forming a voltage drop of 1.0 volts, which is nearly independent of current flow.


[^8]2) The reference voltage ( 1.0 volts) is maintained at the inverting input of the first stage of the operational amplifier by virtue of its high gain (200,000) and using negative feedback.
3) An output voltage is developed when the conductance of the probe permits current to flow through the thermistor. The output voltage is directly proportional to the current flow and hence to the oxygen concentration at the probe.
In order to calibrate the oxygen meter, the following procedure is used:

1) Disconnect the oxygen probe from the oxygen meter and check to be sure the voltmeter readout indicates zero voltage. If the voltmeter does not indicate zero voltage, place the oxygen meter switch in the "null" position and adjust the first stage offsetnull variable resistance pot until the voltmeter indicates zero volts.
2) Place the oxygen meter switch in the "on" position ancl adjust the second stage offset-null variable rosistance pot until the voltmeter again indicates zero volts.
3) Dlug the oxygen probe into the oxygen meter. Check to be sure that the oxygen meter switch is in the "on" position. Place the probe in a solution of known oxyqen concentration and adjust the calibration variable resistance pot until the voltmeter indicates a voltage that corresponds to the oxygen concentration of the solution being used for calibration.
7.5 Automated Data Recorder

### 7.5.1 objective

The objective of this project is the design and construction of an automated system to: a) convert analog data to digital format; b) record the converted data on magnetic tape: and c) automatically transcribe the recorded data onto IBM cards for data processing. The system is to have the capability of receiving, converting and recording from several sensors during any given time span.

### 7.5.2 Background

Plans for the Holbrook Cove Survey called for the deployment of current velocity meters at several locations and to leam these instruments in place to measure current data over considerable time spans. It did not appear practicable to expect an operator to man these instruments and record the data manually. In addition, it was anticipated that a great many observations were to be recorded and the time and effort involved in transcribing this information from analog format into machinereadable digital format seemed prohibitive.

### 7.5.3 Results

The automated data recorder is designed and various of the elements have been constructed and tested. The concept appears attractive and feasible although there are still technical difficulties to be overcome.

The automated system consists of several units. These inch

1) Encoder (one for each sensor)
2) Decoder (one for each automated system)
3) Recorder (one for each automated system)
4) Power Supply (one for each automated system)

The encoder circuit has two major states: analog to digiti conversion and data recording. The encoder is designed as a "bus" instrument to allow for general multiplexing of any number of sensors. During the first major state, the time (in seconds) since the initializing pulse which cleared all counters and flip-flops is displayed on the "bus" lines. Each sensor's output has its own counter which keeps a running count of the sensor's impulses until the end of an interval determined by the time signals on the "bus" and a gate. Near the end of MSl (majc: state 1), a tape recorder is turned on to allow the tape to cone up to speed. By the beginning of MS2 all analog to digital conversions are complete and the recording on the cassette conrecorder can begin. The method chosent technique involved in low-speed chosen is based on the standard data from each sensor's counter is to the serial form: start bit, 8 sampled in turn and converted bits. The bits are recorded on data bits (msb first), 2 stop bits. The bits are recorded on the tape by the method of

Frequency Shift Keying (FSK) in which one tone indicates a zero, a second tone indicates a one. This transmission is terminated by a data word of $3770 c t a l$ which serves as an end-of-record mark. The decoder is in two sections. The first is a standard teletype line receiver similar to the one used by Digital Equipment Corporation in their Logic Handbook. The second part converts the eight bits derived from the first part to two hexidecimal characters in Hollerith format. These characters are sent to the relay arivers which cause the relays to simulate a person punching the keys of an IBM 029 keypunch.

No special requirements are imposed on the magnetic tape recorder by the encoder and decoder. The application of the automated data recording system, however, makes it mandatory that it be compact, reliable, and conserve electrical energy. The speed of the capstan drives should be independent of the power supply voltage.

The power supply is any l2-volt dc electrical source. A motorcycle battery was utilized during the 1972 Sumer ocean Engineering Laboratory.

Since the automated system was not completed, a substitute circuit was designed and utilized (see Figure 7.8). This circuit is a standard astable multivibrator, except that one of the timing resistors is replaced by a photoresistor. In addition, a resistor has been added in series with the photoresistor to prevent the resistance in this path from becoming such a small value that oscillation ceases. Astable multivibrators will not commence oscillation if both transistors are saturated. To prevent this condition from occurring, the timing components were selected to insure that they were extremely asymmetrical. The purpose of this circuit is to convert the electrical pulse (generated when the current velocity meter photocell is exposed to its light source) into a voltage which oscillates in the audio range. This oscillating voltage was then used by the magnetic tape recorder to record the pulse as an audible tone on the magnetic tape.

Figure 7.8
Astable Multivibrator Circuit Diagram

### 7.5.4 Conclusions

The automated data recorder syster is technically feasible. The primary problems encountered are fairly mundane. The power consumption must be decreased if the system is to be operated over the time spans envisioned. The timing and recording components must be reduced in physical size.

The FSK transcriber requires additional design work. Its major problem is that a scheme to generate signals to activate the "skip" and "card release" functions on the IEM 029 keypunch must be worked out.

The substitute astable multivibrator circuit worked, but was not problem-free. The primary problems centered about the photoresistor, which was affected by ambient light conditions. This sometimes caused a frequency change in the audible tone and on other conditions it prevented oscillations.

### 7.5.5 Recommendations

It is believed that perfection of the automated data recording system will make a significant contribution to the oceanographic data-gathering effort. For this reason, it is recommended that this project be continued.

It is recommended that a redesign substituting mos logic for the existing TTL logic be undertaken to reduce power consumption. This redesign will also make the recorder less sensitive to the power supply voltage.

A review of the frequency and time length of data samples should be made since both affect the power consumption of the data recorder system.

### 7.6 Tide Gauge

7.6.1 objective

The objective of this project is to design and construct an instrument which will accurately measure and record the fluctuations in the water height during the tidal cycle. This instrument is to be capable of continuous operation for at least 24 hours and is to be able to operate in all weather conditions.

### 7.6.2 Background

In conjunction with the measurements of current flows in Holbrook Cove, it was desirable to obtain a measurement of the water height at both the southern and northwestern entrances
to the Cove simultaneously. These measurements, which would require the construction of two instruments, would then be used to determine the relative importance of each entrance during the ebbing and flooding tides. After this was determined, it was planned to move one instrument to various sites within the Cove in an effort to further establish the tidal flood and ebb patterns of the cove.

### 7.6.3 Results

Due to time limitations, only one instrument was machined in time for field testing. These tests, which occurred during the final days at Maine Maritime Academy, were disappointing because they yielded no accurate data and demonstrated that the machine, as designed and constructed, did not meet the design criteria.

The data obtained from these tests more closely approximated a step function than the expected sine function. A possible explanation for this behavior is that the internal friction of the machine could not be overcome by the small forces generated by the minute tidal changes. Thus, only when the summation of these forces became greater than some critical value, determined by the frictional forces of the apparatus, would the machine begin to scribe, rapidly dissipating the accumulated tidal force. 7.6.4 Conclusions

While the initial results obtained from this machine were unacceptable, the prototype did indicate many specific areas of the design which, if modified, would allow an instrument capable of performing the desired function to be produced. Fundamental to these changes is the consideration of internal friction and the selection of best methods to minimize this force.

### 7.6.5 Recommendations

The design of this apparatus is best considered as comprised of two components: The first component utilizes a Westcic clock mechanism to power a rotating drum upon which a continuous graph may be scribed; and the second component which reduces (scales) the vertical displacement of the tide and uses the tidal energy to drive a scribe which marks upon the rotating drum. To shield this entire component from the weather, it is entirely encased in a plexiglas case.

The details of the first component, which are found in Figure 7.9, show the rotating drum mounted on a combination thrust and radial bearing and driven by a pulley/belt arrangement by the clock mechanism. A better design would be to utilize a horizontal drum mounted by radial bearings on both ends of the drum. This double mounting will prevent any radial displacement of the drum when subjected to the pressure of the scribe and the consequent binding which occurs when only one bearing is used. Another improvement which suggests itself is the utilization of microchain and sprockets to rotate the drum. This will overcome the slippage inherent in a pulley/belt arrangement at very small angular velocities. A further time check could be provided by a clock-activated scribe, activated at regular time intervals.

The second component, as shown by Figure 7.9, is comprised of $a$ weight and a float suspended from a large sprocket by a chain. The weight and float are designed to travel vertically with the tide, rotating the sprocket wheel, which subsequently drives a small pinion gear against a movable rack which is displaced vertically one-fifteenth the amount of the displacement caused by the tide. Affixed to this rack is a scribe which stays in contact with the drum continuously. If the vertical rotating drum is replaced by a horizontal rotating drum, the rack and pinion assembly can be replaced by an assembly utilizing a screw-activated scribe, which should be an improvement.

As was previously indicated, the primary obstacle to the machine functioning properly is that insufficient energy is generated by small tidal displacements to cause the machine to scribe continuously. As shown in Figure 7.9 , the weight and float are both suspended within tubes for the purpose of damping out any local surface disturbances on the water surface. As shown, a float is placed in a tube open to the sea, while a counterweight is placed in a tube sealed to the sea. This arrangement allows the float to rise and fall with the water admitted to its tube. It is apparent that the top and bottom positions of the float during slack tide define the conditions critical to the proper functioning of the tide gauge. These


Figure 7.9
Tide Gauge Construction
critical conditions are summarized in Figure 7.10. The results of the tests during the Summer Ocean Engineering Laboratory and careful examination of Figure 7.10 lead to the conclusion that both the float and the weight must be increased in size if the gauge is to function as designed. An obvious method of accomplishing this is to utilize a large doughnut-shaped float circumscribing a large sealed tube in which a counterweight is suspended. This improvement would tend to minimize the nonlinearity of the system indicated by the equations in Figure 7.12 . The nonlinearity can also be eliminated by properly calibrating the tide gauge.
7.7 Detailed Bottom Topography of Holbrook Cove
7.7.1 Objective

The objective of this project is to obtain the data required to build a detailed topographical model of the bottom configuration in Holbrook Cove. As a first step it is necessary to define the water height above mean lower low water as a function of time.

### 7.7.2 Background

It has been noted that some of the prominent bottom features such as rocks and shoals are not indicated on the charts of Holbrook Cove. In order to rectify this deficiency, a careful and systematic program of taking and recording soundings, using a small boat and lead line, is planned.

### 7.7.3 Results

During the 1972 Summer Ocean Engineering Laboratory there was time to complete only the first step, i.e., prepare a nomogram (see Figure 7.11) that will permit the prediction of water height above mean lower low water as a function of time. During the process of checking this nomogram against observed tide heights at the dock of the Maine Maritime Academy, it was discovered that the scope of the tide was about 12 inches greater than would be predicted using the Coast and Geodetic Survey Tide Tables. An example of the use of Figure 7.11 is in Appendix $C$. 7.7.4 Conclusions

The tide height observations at the dock at the Maine Maritime Academy agreed with the predictions calculated using


Figure 7.10
Tide Gauge Critical Conditions

$$
\text { way } \frac{=}{E}+4
$$

$$
-84-
$$

$$
+5
$$



Figure 7.11
Nomogram
the nomogram. Based upon the observations, it appears that the corrections to tide height for Castine, Maine (as indicated in the Coast and Geodetic Survey Tide Tables), are in error. The correction for High water should read +1.7 vice +0.7 .

### 7.7.5 Recommendations

The first step in the process of building the topographical model of the bottom configuration of Holbrook Cove is completed with the preparation of the nomogram. It is recomended that the nomogram be used to correct soundings taken in the subsequent phases of the project to obtain water heights corresponding to mean lower low water depths.
7.8 Bottom Sample Corer

### 7.8.1 Objective

The purpose of this project is to design, build, and test a corer to obtain bottom mud samples. The corer should be inexpensive and easy to operate.

### 7.8.2 Background

There were two reasons for choosing this project. One was to obtain experience in designing and building a piece of oceanographic equipment; the second was to produce a corer that would be available for use in the ocean engineering program at Maine Maritime Academy.

### 7.8.3 Results

In the actual test in Holbrook cove, the unit was Iowered into the water to check the balance. It was then lowered until the messenger hit botton, allowing the corer to fall. When the corer was released, it was observed that the line holding the tripping device, corer and messenger became taut and then went slack. When the unit was retrieved, it was discovered that the line attaching the corer to the tripping device had been severed. The boat used for this test had not been moored and the test site was not buoyed. All attempts to locate the corer failed. 7.8.4 Conclusions

Judging from the observations of the line holding the tripping device, corer and messenger, the corer penetrated the bottom and would have permitted the retrieval of a core if it had not been lost. The design of the corer should be modified
to providu for a steel wire leader for attachment of the corer to the tripping device.
7.8.5 Recommendations

Future tests of this device should be conducted only after the boat has been moored and the site suitably marked so that, in the case of severed lines, the lost units may be located and retrieved. The basic design appears sound, although it is not possibte to state whether or not the samples retrieved using the corer would be sufficiently undisturbed to permit an accurate reconstruction of the boundaries and depths of the sedimentary layers.
7.8.6 Detailed Procedure

The corer consists of a body composed of an internal pipe and an external pipe. On the ends of these pipes are two fittings called the head and tail. These fittings are threaded to fit on the cnds of both pipes. They are designed in such a manner that the outer pipe will take the stress and the internal pipe will retrieve the sample. Once obtained, the sample is removed by pushing the sediment out with a push rod which consists of a wooden tip the same diameter as the internal pipe and a rod longer than the pipe.

On one end of the tripping device is a messenger and on the other side, the corer. The tripping mechanism and arm are all designed so that the whole device, with corer and messenger, will balance in the water. When the device is lowered, the messenger, which has 35 feet of line extended ahead of the corer, touches the bottom and allows the tripping arm to rotate and the corer to fall to the bottom a distance equal to the messenger line length plus four feet (the length of the corer). Once the corer hits the bottom, the whole unit is raised and the sample removed.



APPENDIX A
DROGUE BODY COMPUTER PROGRAMS

## APPENDIX A

The first computer program is modified solely by input data. There is no need for a modification of the source program.

One of the first data cards is a parameter decision card specifying which options the user of the program wishes to utilize. This is stated in the program listing. The flow chart points out the various combinations of options possible. Comment cards are permitted at certain points to keep track of special data.

One possible option is the use of data-smoothing subroutines. The preferred smoothing subroutine is spline fit. Spline fit approximates an idealized drafting spline curve through the data positions. If the number of equations (positions) is too small to permit the use of a spline, a least-squares fit subroutine is used.

Another important option is the IAXIS parameter which rotates the axis such that the $X$ coordinates can be plotted and calculated as a function of the $Y$ coordinates.

The spline and least-squares subroutines compute the $Y$ coordinates as a function of the $X$ coordinates. A reversal in buoy velocity will cause infinite looping in the spline and leastsquares subroutines since they will yield two or more values of $Y$ for one value of $X$. If a buoy reverses direction, the program will terminate the buoy path and restart it in the opposite direction. In cases of vorticity (in the Holbrook Cove Survey), many restarted paths resulted. In those cases, it was specified on the decision card that no interpolated values were desired and that all broken segments should be connected. Because the spline fit subroutine allows the user to specify the placement of the constraints on the equations, the user sometimes supplied cards listing the position of constraints and/or position of output points desired. If the user wished to place the constraint or position of output points, he specified a positive nunber of constraints and output points, with the positions given in $X$ coordinates. If the user wished the program to pick the positions, a negative number was specified. If a buoy back-
tracked, the program itself decided on a number of constraints and output points, and the placement of each.

In order to graphically represent velocities in addition to pathlines, two subroutines placed either a tickmark for times or a line through two or more buoy paths, depending on user specification (e.g., if the distance between ten-minute tickmarks decreased, the buoy was traveling slower. If the distance increased, the buoy was traveling faster).

In the numerical printout part of the program, two types of velocities were computed: a backwards difference velocity and a centered difference velocity. The backwards difference velocity is computed by dividing the distance between the position under consideration and the position at the previous observation by the difference between the time of the observation of the position under consideration and the time of the previous observation. The centered difference velocity is computed by dividing the sum of the distances between the position under consideration and the positions of the previous observation and the next subsequent observation by the sum of the differences between the times of observation of the position under consideration and the times of the previous and next subsequent observations. The subroutine STOREC could be further modified to allow a least-squares or other velocity approximation if the user wished to modify the source.

All sorts, with the exception of TSORT, are interchange sorts, as the number of sorted items cannot exceed 99. The limit on the number of buoys' segments is explained by the fact that the program considers each buoy segment caused by backtracking to be a separate and equal segment (e.g., in the case of vorticity, a buoy input with 99 points may be composed of 20 or more segments, etc.). TSORT takes an already sorted list and puts them in ascending order, in the event that they were originally in descending order.

There are a few limits and constraints that are intrinsic in the source program, and to be changed require the source to be modified. Numerical limits are listed. Other major limits not listed follow. The IWARN array is a controlling factor in
the dumping of input constraints and output positions for the interpolation routines and timelines. If a buoy backtracks, IWARN for that particular buoy is activated. This means that all input constraints are dumped and replaced and that timelines are not allowed on any of the segments (tickmarks are).

Spline is used in all cases except where the number of
points is too close to the number of equations. Then, and only then, is least squares used.

DROGUE BODY COORDINATE
AND VELOCITY CALCULATION COMPUTER PROGRAM



$$
\begin{aligned}
& \text { CIICK A SPIINE FIT CURVE } \\
& \text { CLSO SOIVES EQUATI JNS GIVEH TM IT BY RUCK IH A LEAST SOUARCS WAY }
\end{aligned}
$$ TYMES CALCULATES CUFVES THAT

$$
\begin{aligned}
& F T H \\
& 5 \mathrm{FF} \\
& 7 S 1 T \\
& \text { ND S } \\
& \text { HLI } \\
& \text { IGNS } \\
& \text { COEF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AINTS } \\
& \text { SGUARES FIT }
\end{aligned}
$$

$$
\begin{aligned}
& t \\
& \text { EQUATIONS } \\
& \text { SPITNF AND }
\end{aligned}
$$

$$
\begin{aligned}
& \text { INTERVALS THE TUTPUT POSITICNS } \\
& \text { PUT POINTS IN ASCENOING TRDER IT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MER } \\
& \text { SORT } \\
& \text { TAG-A-LCNG ARHAY } \\
& \text { NPUT POTNTS }
\end{aligned}
$$

ING
R IF
THE Y

$$
\begin{aligned}
& \text { A TAG-A-LCNG } \\
& \text { INPUT PRINTS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EQUATIONS } \\
& V \text { SPLINE AN }
\end{aligned}
$$


 TYINT, I NCRRT, JUSIN,IMLINE
CTANCA/AREA?/ XMAX,XNJN,YAAX,YMIN
CIMAN /APFAT/ TCHAD, NWSTAP.

LTCTAL
GHAFACTFR VAPIAPLES

$$
\begin{aligned}
& \text { HOURHFURMINLTEMINUTESEG"IOSECOND } \\
& \text { INITIALIZATICN DF VALLES }
\end{aligned}
$$




1,CHAR22,CHAR23,CHAR24,CHAR25
WRITEIKOT, 105OIIPUN, INOROT, JUSIN, ICONET,IAXIS,ITMARK,IMLINE,

$$
\begin{aligned}
& \text { ISTRLN } \\
& \text { IF(IPUN,NE.O) }
\end{aligned}
$$

ISTRLN

$$
\text { WRITEIKPCT, } 1
$$

1 WRITE(KPCT, 1050 IIPIJN, INDRUT, JUSIN, ICONET, IAXIS, ITMARK,IMLINE
2ISTRLN
IFIIAX


CONVERSION OF TRUE NCRTH DEGREES.MINUTES TO RADIANS
NDEGTN=DEGTN+E
$N M I N T=(D E G T N-N D E G T N+E)+100$.
NACDE= NM INT $/ 60$



 J？$\because$ VIM $=1$

$$
\begin{aligned}
& \text { WPTT:(KRT, IERB)JMQiNUW } \\
& \text { ICTINA=0 }
\end{aligned}
$$


$\stackrel{8}{6}$
FPEM FUNL 36O CEGREES


NTNA＝IAPS（NIN）
$I C H E C K=0$
$I R=I A$,
$K I U N T=O$
$A I N A C=N I N A$
$O D E S O O I L U O F=I B, N I N$
$I A C I C H=O$
$I C H C C K=I C H E C K+1$
NTNA＝IAPS（NIN）
$I C H E C K=0$
$I R=I A$,
$K I U N T=0$
$A I N A C=N I N A$
$O D ~$
$I S O O I L U C F=I B, N I N$
$I A C I C H=O$
$I C H C C K=I C H E C K+1$
NINA＝IAPS（NIN）
$I C H E C K=0$
$I R=I A$,
$K I U N T=O$
$A I N A C=A I N A$
$O D E S O O I L U C F=I B, N I N$
$I A C I C H=O$
$I C H C C K=I C H E C K+I$
SECTCQ FCR TRANSIT ANELF ONF SECTIR FQQ TRANSIT ANCLE TWR TRANSIT ANGLE TWO
TIME IF SIGHTING HOURS TIME IF SICHTING MINLIES STCT•JR IS RLANK IF INFUTTING


IXTEMPITSIN(XTEMP




46


(ATIME = ITIME (JOBNUM, (EA(JOBNUM))-ITIME(JCENUM. I)
IF IATIME.EG.O)AVEL=C.OO

IF【LEN\{JCENUN) *GT. 11GCTO 550L


5501
$\begin{array}{ll} & \text { GOTO } 5503 \\ 5502 & \text { CALL AUTOD }\end{array}$



## CALL TIMEPH(ILAP, IELT)

5503
5050

GOTO 5423

GOTO 5423
PREVIDUS BLOCK NEXT FCR BACKTRACKING BUGY5 ANO ALL MEASURES FOR
KESTARTING THE NEXT SENT


CIRCT=DEGREE(DIRCT)
ISTCRE $=2$
$\underset{A=3}{C A L L}$ TMEPH(ILAP,IELT)
ILUU
8
0
0

$\omega \circlearrowleft$




IF（LEN（JC3NUN）．GT．LIGCTO 5601



IF (NCUT.LT. O)CALL XCLIER
AJUTA=IABSINCLII

 COTO 3704


| IFIGIMLIAE.EG.OI.ANU.(ItMARK.EG.O)IGOTO 9998 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| istart must me less than ifia. therefcre if the rgurs are timed <br>  IL. Start at 230000 t 000100 tren time must be adjusted |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| tire jf stakting hlurs |  |  |  |  |  |  |  |
| time jF starting minties |  |  |  |  |  |  |  |
| TIME JF Starting secinaos |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

5315
*
4000

U


If（IIIIIAK．1G．OI．ANL－IITMAKK．NE．O）．ANO．（ISTKLN．EO．C））CALL TIMEMK
 WHIT「IK，II，111LJXMAX，WHIN，YMAX，YMIIN



 | $\square$ |
| :--- |
| $\vdots$ |
| $\vdots$ | MAINOS50

MAINOS 7
 IOGONIVW
$0 G G O V I V A$
$G S G O N I V W$ MAlNOSOl
MAlNOSO？ MAlinOSOS －GGONIVW 97GONIVW 2950NIVW 67 GONIVW
89 SONIVW TLSONIVW
$O \angle G O N I V W$
$S F G O N I V W$ $E \angle S O N I V W$
$Z \angle S O N I V W$
$1 \angle S O N I \forall W$

rifipletumafe it strinenis FITHLTMAXIMLA IIMFASIEAS




XMIN＝，F F 10．3．









IT'






NBAK=MBAK +

GUTG 900 ,

$$
\begin{aligned}
& \text { E47 MBAK }=\text { MHAK+1 } \\
& \text { CALL RSORTIXINII,YINT, INCG) }
\end{aligned}
$$

SEGMENTEU TIMELINE CF ACT

$\cup$





WRITE(KOT, 95 C (INTIME(t), $\mathrm{L}=1,9$, TCHAR, (MTIME(L), $L=1,91, \mathrm{~J}$, MBAK







$$
\begin{array}{ll}
\mathrm{C} & \text { EOR INCA=INCC-4 } \\
\mathrm{C} & \\
\mathrm{C} & \text { TYPE OF CURVE SPLINE } \\
\mathrm{C} &
\end{array}
$$

$$
\text { DO } 801 \quad M=2,1 \mathrm{ACA}
$$

$$
\operatorname{XDK}(M)=X
$$

$$
\infty
$$

XOUT(M) $=$ COUT
802 CONTINUE

E66 EONCR=(XINU(INCC)-XIN(11)//(FLUATIINCOI+1.) $\quad \begin{aligned} & \text { EOTO }\end{aligned}$ CXNCR=(DXNCR*(FLOAT(INCO) +1.1$) / 160$.

666

## APT $S=100$ <br> XOUT (1) $=X I N O(1)$ $C 0$ $802 M=2.95$

802 CONTINUE








IF INEETWEEN * $x$ Jyd $d \forall$ \& $\forall$ JNI7 V $\stackrel{\sim}{\bullet}$


WRITEIKP(T, 860$)(X O U T(L), L=1, J)$
E10 CONTINUE
800 CONTINUE


14
0
0
0
CIJNT INUE
co dimension scan iafity checks jn fron where the dimensions care axts

8 -
ง U






CINENSIUN A $(105,25), x(1), I L(1)$
$N M=M+1$
$L L=1$
$C ?+C \quad J=1, M M$
$I L(J)=0$
$I L(J)=0$
$I=1$
$\therefore \quad 3 \quad K=1+N M$
3
$m \quad \rightarrow$

AIJTOC SUBFJUTINE ***************************



XNOK $=$ NNDK

calling a test of its values CALL DUCKT
$\begin{array}{ll}298 & \text { IHELP=1 } \\ 299 & \text { RETURN }\end{array}$



591
HAS NDW

$$
\begin{aligned}
& \text { IREEN SUBSTITLED WITH IHE VALUE }, \text {,Flo.3///1 } \\
& \text { END }
\end{aligned}
$$

$$
\begin{array}{r}
\text { CUKT0037 } \\
\text { OUKT0038 }
\end{array}
$$




INTPOO37
INTPOO3日


SINGULAR.


 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ




$\qquad$

CDEF
CUPP
SUBR
EIMEA
THIS
THIS INSTALIATICN REGIIRES LCGICAL UNIT G AS THE PRINTER

$$
K: I T=\epsilon
$$






NJUTA =IARS(NCUT)

CONTINUE LKITEIXDT,48CIJEBNUN
49 1
 fofnatcl"
formatilit, jutput filints fer jcb numbef 1,121

$$
\begin{aligned}
& \text { OUTROO37 } \\
& \text { OUTROO38 } \\
& \text { CUTROO39 } \\
& \text { UUTROO40 } \\
& \text { JUTROO41 } \\
& \text { GUTROO42 } \\
& \text { UUTR0043 } \\
& \text { DUTROO44 } \\
& \text { DUTROO45 } \\
& \text { OUTROO46 } \\
& \text { DUTROO47 } \\
& \text { CUTROO48 } \\
& \text { OUTROO49 } \\
& \text { OUTROO50 } \\
& \text { UUTROO51 } \\
& \text { OUTROO52 } \\
& \text { CUTROO53 } \\
& \text { QUTROO54 } \\
& \text { OUTFOO55 }
\end{aligned}
$$

$\stackrel{8}{7}$
gogingonis



EECISIMN OF WHERE CJANECIION PGINT GOES
IF(IIAIICH. CEII.AND.IIANS.NE IJIWRITE

 1)
WRITVEIKPCY

[^9]PRINTEU ENLY
IFI(IPUN.NE. I).OR. (INCROT.EQ. IIICALL TSOFT ( $\mathrm{X}=\mathrm{LEN}(\mathrm{JCBNUM})+\operatorname{IACICH}$

IF(LEN(JCBNUH).EQ.1) $t$ ) $=$ (EN(JOBNUM)
WRITE(KGT,15C)LX, JORAMM
LENT $=1$ EN (JOBAUM) ENT=LEN(JOBNUM)
RITE(KOT,17E)
LF (IENT JCPNUM)
ifiliadich.eg.



IF (XMIN.GT.XIN(JOBNUN,I)IXMIN=XIN(JOBAUM,I)
IF (YNAX.LT.Y IN(JORAUN,I) IYMAX=YIA(JJBNUM, I)
IF (YMIN.GT. YIN(JOAMU,I)IYMIA=YIM(JCBNUN,I)
cont inve
:100


[^10]
否





NEGATIVE ANGLE FIX
\[

$$
\begin{aligned}
& \text { AEGATIVE ANGLE FIX } \\
& \text { IFYNANGLE GE OIGOTE ICO }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { IF (NANG } \\
& \text { ISUR }
\end{aligned}
$$

IF (MANGLE.NE.O)ISUB=-1
IFIMANGLENE.OIMATIGLE=GC + MANGLE

$$
\text { AANGLE=360 }+ \text { ISUB +NANGLE }
$$

MANGLE $=360$ + ISUB + NANGLE:

$$
\begin{aligned}
& \text { CEGREE=FLCAT(NANGLE) TFLCAT(MAVGLFJ/IOC } \\
& \text { RETURN } \\
& \text { END }
\end{aligned}
$$

$$
\stackrel{3}{9}
$$


EETLRN
ENC

SAMPLE OUTPUT
FOR DROGUE BODY COCRDINATE
AND VELOCITY CALCULATION
COMPUTER PROGRAM
解


AVERG．OIRETA
DESPMIN
11.00

$l$ PESITITAN

| LEHTIDE | TIVELPT |
| ---: | ---: |
| HM：MH：SS | HH：MM：SS |
| $-00: 1 Q: 00$ | $C C: 00: 00$ |
| $-00: 10: 20$ | $C A: C 7: 40$ |
| $-00: 05: 50$ | $00: 04: 30$ |
| $00: 00: 00$ | $00: 05: 50$ |


|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |


$Y$ EUSRD
METERS
365.0
368.2
370.2
376.4
－ISTIAG WF CCEFFICIEATS GE LFACT SOMAEES M＝TMMD



|  |
| :---: |
| ［＊ $2 \rightarrow$－ |
| ¢＊¢9\％ |
| E「Tくつ |
| L＊00う－ |
| Sd91－k |
| 08312 $x$ |

N号 4

WEKAGES FUK GRCUP：
I มสัดกกN Gur とこう NI SIVITd $\rightarrow$ $2 G * 5 E$

10 LUTHUT PEINTS FER JFQ AUMRIA



N

-18.210
306.722
LISTING ar GMEFSICIENTS USEO IN SUREJUTINE DUCK
45.429
-150.341
-20.722
-158.245


$\xi$


| ImemAKK UWTFLT PU | $\text { TIME }=$ | $04: 35: 00$ TIMENARKS | $\begin{aligned} & \text { TIME } \\ & \mathrm{N}^{\prime}: \pm \end{aligned}$ | $\underset{6}{A F T E R}$ | LCHTIDE= $00: 41: 00$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IBN X - ¢ 5 | IEN YeuTS |  |  |  |  |
| -26E.273 | 245.302 |  |  |  |  |
| - 2 A - 275 | 347.274 |  |  |  |  |
| - 20.275 | $3 \% 1.058$ |  |  |  |  |
| -20t. 275 | 7.76 .734 |  |  |  |  |
| $-280.275$ | 364.302 |  |  |  |  |

$L O W T I D E=00: 51: 00$



## IEM Y7.1T

323.33
325.73
226.51
335.14
342.75

IUN XLUTS
-150.097
-196.077
-146.37
-154.037
-140.637



1404.840
327.482


0
0
UUTPU: PuINTS=
IHEMAFKS NT. $\quad$ S

0.0
YMIN $=$



tetal numecr ec jrps sevals 2


$$
Y_{\text {max }}=378.395
$$

DROGUE BUOY PLOTTING COMPUTER PROGRAM LISTING



KI $\mathrm{N}=\mathrm{a}$
KT $\mathrm{N}=9$
$K F Y=1$
$K \subset Y I=6$

Datice 1

IUSNUT NO ESTI


q. An(k1:1,5)?)WAST! pranckiv, 5li)lxiar

8

$$
1: 71422
$$

rHART.

$$
\begin{aligned}
& a \\
& \underline{a}
\end{aligned}
$$







กM CONSOL

Plotiol 09






[^11]```
NOTE ;
\begin{tabular}{rr} 
& \multicolumn{2}{c}{ Castin } \\
L. 44 & \(24^{\prime}\) \\
68 & \(48^{\prime}\) \\
\hline
\end{tabular}
H.W. -4 Min on Portland
L.W. -l Min on Portland
H.W. +0.7 FT
L.W. +0.0 FT
```

Ranges
MEAN 9.7 FT
SPRING 11.1 FT
MEAN TIDE LEVEI 4.8 FT
ALL HOURS EASTERN DAYLIGHT SAVINGS TIME

		TIDES	
		TIME	H?
Julv 4, 1972		0503	9.4
		1115	0.1
		1732	10.2
		2356	0.1
July		0605	9.2
		1212	0.3
		1834	10.4
July		0103	-0.1
		0710	9.1
		1314	0.4
		1932	10.6
July		0210	-0.4
		0820	9.1
		1417	0.4
		2035	10.9
July	8	0312	-0.7
		0922	9.3
		1518	0.2
		2137	11.2
July	9	0413	1.0
		1019	9.5
		1616	0.1
		2232	11.4

TIDES

	TIME	HT
July 10	0510	-1.3
	1116	9.0
	1714	-0.1
	2328	10.8
July 11	0601	1.4
	1209	9.8
	1808	-0.2
July 12	0019	11.4
	0651	-1.3
	1258	9.9
	1759	-0.1
July 13	0110	11.1
	0738	-1.1
	1346	9.9
	1950	0.0
July 14	0159	10.7
	0823	-0.7
	1434	9.8
	2039	0.2
July 15	0247	10.1
	0910	-0.2
	1520	9.3
	2130	0.5
July 16	0335	9.5
	0953	0.3
	1606	9.4
	2223	0.8
July 17	0427	8.3
	1041	0.8
	1655	9.2
	2315	1.0
July 18	0520	8.4
	1130	1.2
	1746	9.1
July 19	0013	1.2
	0619	8.1
	1221	1.6
	1839	9.0

TIDES

	TIME	HT
July 20	0109	1.2
	0718	7.9
	1316	1.7
	1935	9.0
July 21	0210	1.1
	0814	7.8
	1411	1.8
	2027	9.1
July 22	0305	0.9
	0909	8.0
	1502	1.7
	2118	9.3
July 23	0354	0.7
	0958	8.2
	1550	1.5
	2204	9.3
July 24	0437	0.4
	1041	8.4
	1635	1.2
	2245	9.9
July 25	0517	0.1
	1122	8.7
	1716	0.9
	2324	10.7
July 26	0554	-0.2
	1158	9.0
	1752	0.6
July 27	0003	10.4
	0630	-0.4
	1236	9.4
	1835	0.3
July 28	0041	10.5
	0707	-0.6
	1313	9.7
	1916	0.0

[^0]: Funding for the 1972 Summer Ocean Engineering Laboratory was provided by:

 The National Sea Grant Program, Grant No. 2-35150
 The Henry L. and Grace Doherty Charitable Foundation, Inc. The St. Anthony Foundation
 The M.I.T. Undergraduate Research Opportunities Program
 The M.I.T. Information Processing Board
 The M.I.T. Freshman Advisory Council
 The Maine Maritime Academy
 The Massachusetts Institute of Technology
 Equipment that was made available to the project at no cost included:

 Equipment

 ## Instruments for heavy metal analysis

 Polagraphic oxygen electrode

 Mechanical bathythermograph and Nansen bottle

 Laboratory space and instrumentation for chlorophyll and heavy metal analysis

 ## Donor

 Dr. Frank Aldrich and Mr. George Boylen, M.I.T. Environmental Medical Service

 Dr. Frank Carey, Woods Hole Oceanographic Institution

 Dr. Sloat Hodgson, Woods Hole Oceanographic Institution

 Professor Stephen Moore, M.I.T. Department of Civil Engineering

 Research Vessel LOBSTER

 Various electronic components
 The individuals who donated their time to the projects
 without compensation include:
 Individual
 Professor A. D. Carmichael
 Professor Damon E. Cummings
 Professor Ira Dyer
 Mr. Herman Kunz
 Professor Dean Mayhew
 CAPT Willard F. Searle, USN (Ret)

 Organization
 M.I.T.
 M.I.T.
 M.I.T.

 Searle Consultants
 Maine Maritime Academy
 Searle Consultants

[^1]: *For a detailed description, see Sverdrup, H. U., M. W. Johnson,

[^2]: Figure 7.7
 Oxygen Meter Circuit Diagram

[^3]:
 1.LENT), YIAT

[^4]:

[^5]: APPENDIX B
 TIDES AT CASTINF, MAINE
 JULY 4, 1972 THROUGH JULY 28, 1972

[^6]: Funding for the 1972 Summer Ocean Engineering Laboratory was provided by:

 The National Sea Grant Program, Grant No. 2-35150
 The Henry L. and Grace Doherty Charitable Foundation, Inc. The St. Anthony Foundation
 The M.I.T. Undergraduate Research Opportunities Program
 The M.I.T. Information Processing Board
 The M.I.T. Freshman Advisory Council
 The Maine Maritime Academy
 The Massachusetts Institute of Technology
 Equipment that was made available to the project at no cost included:

 Equipment

 ## Instruments for heavy metal analysis

 Polagraphic oxygen electrode

 Mechanical bathythermograph and Nansen bottle

 Laboratory space and instrumentation for chlorophyll and heavy metal analysis

 ## Donor

 Dr. Frank Aldrich and Mr. George Boylen, M.I.T. Environmental Medical Service

 Dr. Frank Carey, Woods Hole Oceanographic Institution

 Dr. Sloat Hodgson, Woods Hole Oceanographic Institution

 Professor Stephen Moore, M.I.T. Department of Civil Engineering

 Research Vessel LOBSTER

 Various electronic components
 The individuals who donated their time to the projects
 without compensation include:
 Individual
 Professor A. D. Carmichael
 Professor Damon E. Cummings
 Professor Ira Dyer
 Mr. Herman Kunz
 Professor Dean Mayhew
 CAPT Willard F. Searle, USN (Ret)

 Organization
 M.I.T.
 M.I.T.
 M.I.T.

 Searle Consultants
 Maine Maritime Academy
 Searle Consultants

[^7]: *For a detailed description, see Sverdrup, H. U., M. W. Johnson,

[^8]: Figure 7.7
 Oxygen Meter Circuit Diagram

[^9]:
 1.LENT), YIAT

[^10]:

[^11]: APPENDIX B
 TIDES AT CASTINF, MAINE
 JULY 4, 1972 THROUGH JULY 28, 1972

